# -*- coding: utf-8 -*- # @Author: Weisen Pan # Load necessary environment modules source /etc/profile.d/modules.sh # Source the module environment setup script module load gcc/11.2.0 # Load GCC compiler version 11.2.0 module load openmpi/4.1.3 # Load OpenMPI version 4.1.3 for distributed computing module load cuda/11.5/11.5.2 # Load CUDA version 11.5.2 for GPU acceleration module load cudnn/8.3/8.3.3 # Load cuDNN version 8.3.3 for deep learning operations module load nccl/2.11/2.11.4-1 # Load NCCL version 2.11 for multi-GPU communication module load python/3.10/3.10.4 # Load Python version 3.10.4 # Activate the Python virtual environment with PyTorch and Horovod installed source ~/venv/pytorch1.11+horovod/bin/activate # Setup the log directory for the experiment LOG_PATH="/home/projadmin/Federated_Learning/project_EdgeFLite/records/${JOB_NAME}_${JOB_ID}" # Define the log path rm -rf ${LOG_PATH} # Remove any existing logs in the directory mkdir -p ${LOG_PATH} # Create the log directory if it doesn't exist # Setup the dataset directory, copying data for local use DATA_PATH="${SGE_LOCALDIR}/${JOB_ID}/" # Define the local directory for the dataset cp -r ../summit2024/simpleFL/performance_test/cifar100/data ${DATA_PATH} # Copy CIFAR-100 dataset to local storage # Set experiment parameters for federated learning OUTPUT_DIR="./EdgeFLite/models/coremodel/" # Directory where model checkpoints will be saved FED_MODE=1 # Federated learning mode enabled CLUSTER_FIXED=0 # Cluster dynamic, not fixed SPLIT_RATIO=4 # Split the dataset into 4 parts TOTAL_CLUSTERS=20 # Number of clusters (e.g., number of different clients in federated learning) SELECTED_CLIENTS=20 # Number of clients selected per round MODEL_ARCH="resnet_model_110sl" # Model architecture to be used (ResNet-110 with some custom changes) DATASET_NAME="cifar100" # Dataset being used (CIFAR-100) NUM_CLASS_LABELS=100 # Number of class labels in the dataset (CIFAR-100 has 100 classes) SINGLE_BRANCH=0 # Multi-branch model architecture (not single-branch) AMP_MODE=0 # Disable Automatic Mixed Precision (AMP) for training ROUNDS=650 # Total number of federated learning rounds EPOCHS_PER_ROUND=1 # Number of local epochs per round of federated learning EXP_ID="EdgeFLite_R110_80c_650r" # Experiment ID for tracking # Navigate to the project directory cd EdgeFLite # Change to the EdgeFLite project directory # Execute the training process for federated learning with the defined parameters python train_EdgeFLite.py \ --is_fed=${FED_MODE} # Enable federated learning mode --fixed_cluster=${CLUSTER_FIXED} # Use dynamic clusters --split_factor=${SPLIT_RATIO} # Set the dataset split ratio --num_clusters=${TOTAL_CLUSTERS} # Total number of clusters (clients) --num_selected=${SELECTED_CLIENTS} # Number of clients selected per federated round --arch=${MODEL_ARCH} # Set model architecture (ResNet-110 variant) --dataset=${DATASET_NAME} # Dataset name (CIFAR-100) --num_classes=${NUM_CLASS_LABELS} # Number of classes in the dataset --is_single_branch=${SINGLE_BRANCH} # Use multi-branch model (set to 0) --is_amp=${AMP_MODE} # Disable automatic mixed precision --num_rounds=${ROUNDS} # Total number of rounds for federated learning --fed_epochs=${EPOCHS_PER_ROUND} # Number of local epochs per round --spid=${EXP_ID} # Set experiment ID for tracking --data=${DATA_PATH} # Provide dataset path --model_dir=${OUTPUT_DIR} # Directory where the model will be saved