use-case-and-architecture/EdgeFLite/scripts/EdgeFLite_W168_96c_650r8.sh
Weisen Pan 4ec0a23e73 Edge Federated Learning for Improved Training Efficiency
Change-Id: Ic4e43992e1674946cb69e0221659b0261259196c
2024-09-18 18:39:43 -07:00

45 lines
2.4 KiB
Bash

# -*- coding: utf-8 -*-
# @Author: Weisen Pan
# Load environment modules and required dependencies
source /etc/profile.d/modules.sh
module load gcc/11.2.0 # Load GCC version 11.2.0
module load openmpi/4.1.3 # Load OpenMPI version 4.1.3
module load cuda/11.5/11.5.2 # Load CUDA version 11.5.2
module load cudnn/8.3/8.3.3 # Load cuDNN version 8.3.3
module load nccl/2.11/2.11.4-1 # Load NCCL version 2.11.4-1
module load python/3.10/3.10.4 # Load Python version 3.10.4
# Activate the virtual Python environment
source ~/venv/pytorch1.11+horovod/bin/activate # Activate a virtual environment for PyTorch and Horovod
# Define the log directory, clean up old records if any, and recreate the directory
LOG_PATH="/home/projadmin/Federated_Learning/project_EdgeFLite/records/${JOB_NAME}_${JOB_ID}"
rm -rf ${LOG_PATH} # Remove any existing log directory
mkdir -p ${LOG_PATH} # Create a new log directory
# Set up the local data directory and copy the dataset into it
DATA_STORAGE="${SGE_LOCALDIR}/${JOB_ID}/" # Define a local data directory for the job
cp -r ../summit2024/simpleFL/performance_test/cifar100/data ${DATA_STORAGE} # Copy CIFAR-100 dataset to the local directory
# Navigate to the working directory where training scripts are located
cd EdgeFLite # Change directory to the EdgeFLite project
# Execute the training script with federated learning parameters
python run_gkt.py \
--is_fed=1 \ # Enable federated learning
--fixed_cluster=0 \ # Allow dynamic cluster formation
--split_factor=1 \ # Data split factor
--num_clusters=20 \ # Number of clusters
--num_selected=20 \ # Number of selected clients per round
--arch="wide_resnet16_8" \ # Network architecture: Wide ResNet 16-8
--dataset="cifar10" \ # Use CIFAR-10 dataset
--num_classes=10 \ # Number of classes in CIFAR-10
--is_single_branch=0 \ # Multi-branch network
--is_amp=0 \ # Disable Automatic Mixed Precision (AMP)
--num_rounds=300 \ # Number of federated learning rounds
--fed_epochs=1 \ # Number of local training epochs per round
--cifar10_non_iid="quantity_skew" \ # Non-IID data distribution: quantity skew
--spid="FGKT_W168_20c_skew" \ # Set a specific job identifier
--data=${DATA_STORAGE} # Path to the dataset