use-case-and-architecture/EdgeFLite/scripts/FGKT_R110_20c_650r.sh
Weisen Pan 4ec0a23e73 Edge Federated Learning for Improved Training Efficiency
Change-Id: Ic4e43992e1674946cb69e0221659b0261259196c
2024-09-18 18:39:43 -07:00

44 lines
2.5 KiB
Bash

# -*- coding: utf-8 -*-
# @Author: Weisen Pan
# Load necessary system modules for the job
source /etc/profile.d/modules.sh
module load gcc/11.2.0 # Load GCC compiler
module load openmpi/4.1.3 # Load OpenMPI for distributed computing
module load cuda/11.5/11.5.2 # Load CUDA for GPU acceleration
module load cudnn/8.3/8.3.3 # Load cuDNN for deep learning frameworks
module load nccl/2.11/2.11.4-1 # Load NCCL for multi-GPU communication
module load python/3.10/3.10.4 # Load Python 3.10 environment
# Activate the required Python virtual environment
source ~/venv/pytorch1.11+horovod/bin/activate # Activate PyTorch 1.11 + Horovod environment
# Define log directory and clean up any existing records before starting
LOG_PATH="/home/projadmin/Federated_Learning/project_EdgeFLite/records/${JOB_NAME}_${JOB_ID}" # Set log path
rm -rf ${LOG_PATH} # Remove any existing log directory
mkdir -p ${LOG_PATH} # Create new log directory
# Copy the dataset to the local temporary directory
DATA_DIR="${SGE_LOCALDIR}/${JOB_ID}/" # Set the local directory for dataset
cp -r ../summit2024/simpleFL/performance_test/cifar100/data ${DATA_DIR} # Copy CIFAR-100 dataset to the local directory
# Move to the directory containing the training scripts
cd EdgeFLite # Change to EdgeFLite project directory
# Start the federated learning training process with the specified parameters
python run_gkt.py \
--is_fed=1 \ # Enable federated learning
--fixed_cluster=0 \ # Use dynamic clustering
--split_factor=1 \ # Set data split factor
--num_clusters=20 \ # Set the number of clusters
--num_selected=20 \ # Number of selected clients per round
--arch="resnet_model_110sl" \ # Model architecture (ResNet 110 with single-layer output)
--dataset="cifar100" \ # Dataset used (CIFAR-100)
--num_classes=100 \ # Number of classes in the dataset
--is_single_branch=0 \ # Enable multi-branch model
--is_amp=0 \ # Disable automatic mixed precision
--num_rounds=650 \ # Number of federated learning rounds
--fed_epochs=1 \ # Number of local epochs per federated round
--spid="FGKT_R110_20c_650r" \ # Experiment ID for logging and tracking
--data=${DATA_DIR} # Specify the path to the dataset