use-case-and-architecture/EdgeFLite/scripts/FGKT_R110_20c_skew.sh
Weisen Pan 4ec0a23e73 Edge Federated Learning for Improved Training Efficiency
Change-Id: Ic4e43992e1674946cb69e0221659b0261259196c
2024-09-18 18:39:43 -07:00

57 lines
2.1 KiB
Bash

# -*- coding: utf-8 -*-
# @Author: Weisen Pan
# Load necessary system modules
source /etc/profile.d/modules.sh
# Load the GCC module version 11.2.0
module load gcc/11.2.0
# Load the OpenMPI module version 4.1.3
module load openmpi/4.1.3
# Load the CUDA module version 11.5.2
module load cuda/11.5/11.5.2
# Load the cuDNN module version 8.3.3
module load cudnn/8.3/8.3.3
# Load the NCCL module version 2.11.4-1
module load nccl/2.11/2.11.4-1
# Load the Python module version 3.10.4
module load python/3.10/3.10.4
# Activate the virtual environment for PyTorch and Horovod
source ~/venv/pytorch1.11+horovod/bin/activate
# Set up the log directory and clean previous records if they exist
LOG_OUTPUT="/home/projadmin/Federated_Learning/project_EdgeFLite/records/${JOB_NAME}_${JOB_ID}"
rm -rf ${LOG_OUTPUT} # Remove previous log files
mkdir -p ${LOG_OUTPUT} # Create a new directory for logs
# Prepare local storage for the dataset by copying it to a local directory
LOCAL_DATA_DIR="${SGE_LOCALDIR}/${JOB_ID}/"
cp -r ../summit2024/simpleFL/performance_test/cifar100/data ${LOCAL_DATA_DIR}
# Navigate to the EdgeFLite project directory
cd EdgeFLite
# Run the federated learning experiment with the specified parameters
python run_gkt.py \
--is_fed=1 \ # Enable federated learning
--fixed_cluster=0 \ # Disable fixed cluster settings
--split_factor=1 \ # Use split factor of 1
--num_clusters=20 \ # Set the number of clusters to 20
--num_selected=20 \ # Select 20 clients for each round
--arch=resnet_model_110sl \ # Use ResNet110 single branch architecture
--dataset=cifar100 \ # Use CIFAR-100 dataset
--num_classes=100 \ # Set the number of classes to 100
--is_single_branch=0 \ # Use multiple branches in the model
--is_amp=0 \ # Disable automatic mixed precision
--num_rounds=650 \ # Set the number of communication rounds to 650
--fed_epochs=1 \ # Set the number of federated epochs to 1
--cifar100_non_iid="quantity_skew" \ # Apply non-IID data partitioning (quantity skew)
--spid="FGKT_R110_20c_skew" \ # Set the experiment ID
--data=${LOCAL_DATA_DIR} # Set the path to the dataset in local storage