a877aed45f
Change-Id: I16cd7730c1e0732253ac52f51010f6b813295aa7
114 lines
3.9 KiB
Python
114 lines
3.9 KiB
Python
"""
|
|
Author: Weisen Pan
|
|
Date: 2023-10-24
|
|
"""
|
|
import numpy as np
|
|
import torch
|
|
import torch.nn.functional as F
|
|
from datetime import timedelta
|
|
from sklearn import metrics
|
|
from scheduler import WarmUpLR, downLR
|
|
|
|
|
|
def get_time_difference(start_time):
|
|
"""Compute the time elapsed since the start_time."""
|
|
end_time = time.time()
|
|
elapsed_time = end_time - start_time
|
|
return timedelta(seconds=int(round(elapsed_time)))
|
|
|
|
|
|
def train(config, model, data):
|
|
start_time = time.time()
|
|
model.train()
|
|
|
|
optimizer = torch.optim.Adam(model.parameters(), lr=config.learning_rate)
|
|
warmup_epoch = config.num_epochs / 2
|
|
scheduler = downLR(optimizer, (config.num_epochs - warmup_epoch))
|
|
warmup_scheduler = WarmUpLR(optimizer, warmup_epoch)
|
|
|
|
dev_best_loss, dev_best_acc, test_best_acc = float('inf'), 0.0, 0.0
|
|
learning_rates = np.zeros((config.num_epochs, 2))
|
|
|
|
for epoch in range(config.num_epochs):
|
|
print(f'Epoch [{epoch + 1}/{config.num_epochs}]')
|
|
|
|
learning_rates[epoch][0] = epoch
|
|
|
|
if epoch >= warmup_epoch:
|
|
current_learning_rate = scheduler.get_lr()[0]
|
|
learning_rates[epoch][1] = current_learning_rate
|
|
else:
|
|
current_learning_rate = warmup_scheduler.get_lr()[0]
|
|
learning_rates[epoch][0] = current_learning_rate
|
|
print(f"Learning Rate: {current_learning_rate}")
|
|
|
|
data = data.to(config.device)
|
|
outputs = model(data)
|
|
model.zero_grad()
|
|
|
|
loss = F.cross_entropy(outputs[data.train_mask], data.labels[data.train_mask])
|
|
loss.backward()
|
|
|
|
optimizer.step()
|
|
if epoch < warmup_epoch:
|
|
warmup_scheduler.step()
|
|
else:
|
|
scheduler.step()
|
|
|
|
predictions = torch.max(outputs[data.train_mask], 1)[1]
|
|
train_acc = get_accuracy(predictions, data.labels[data.train_mask])
|
|
|
|
dev_acc, dev_loss = evaluate(config, model, data)
|
|
test_acc, test_loss = test(config, model, data)
|
|
|
|
if dev_loss < dev_best_loss:
|
|
dev_best_loss = dev_loss
|
|
improve_marker = '*'
|
|
else:
|
|
improve_marker = ''
|
|
|
|
if dev_acc > dev_best_acc:
|
|
dev_best_acc = dev_acc
|
|
test_best_acc = test_acc
|
|
|
|
elapsed_time = get_time_difference(start_time)
|
|
status = (f'Iter: {epoch + 1:>6}, Train Loss: {loss.item():>5.2f}, Train Acc: {train_acc:>6.2%}, '
|
|
f'Val Loss: {dev_loss:>5.2f}, Val Acc: {dev_acc:>6.2%}, '
|
|
f'Test Loss: {test_loss:>5.2f}, Test Acc: {test_acc:>6.2%}, Time: {elapsed_time} {improve_marker}')
|
|
print(status)
|
|
print(f'Best Val Acc: {dev_best_acc}, Best Test Acc: {test_best_acc}')
|
|
|
|
test(config, model, data, final=True)
|
|
|
|
|
|
def test(config, model, data, final=False):
|
|
model.eval()
|
|
with torch.no_grad():
|
|
outputs = model(data)
|
|
test_loss = F.cross_entropy(outputs[data.test_mask], data.labels[data.test_mask])
|
|
predictions = torch.max(outputs[data.test_mask], 1)[1]
|
|
test_acc = get_accuracy(predictions, data.labels[data.test_mask])
|
|
|
|
if final:
|
|
print(f'Test Loss: {test_loss:>5.2f}, Test Acc: {test_acc:>6.2%}')
|
|
confusion = metrics.confusion_matrix(predictions.cpu().numpy(), data.labels[data.test_mask].cpu().numpy())
|
|
print('Confusion Matrix:\n', confusion)
|
|
return test_acc, test_loss, confusion
|
|
|
|
return test_acc, test_loss
|
|
|
|
|
|
def evaluate(config, model, data):
|
|
model.eval()
|
|
with torch.no_grad():
|
|
outputs = model(data)
|
|
eval_loss = F.cross_entropy(outputs[data.val_mask], data.labels[data.val_mask])
|
|
predictions = torch.max(outputs[data.val_mask], 1)[1]
|
|
eval_acc = get_accuracy(predictions, data.labels[data.val_mask])
|
|
|
|
return eval_acc, eval_loss
|
|
|
|
|
|
def get_accuracy(predictions, true_labels):
|
|
return metrics.accuracy_score(predictions.cpu().numpy(), true_labels.cpu().numpy())
|