use-case-and-architecture/ai_computing_force_scheduling/train_model_dag.py
Weisen Pan a877aed45f AI-based CFN Traffic Control and Computer Force Scheduling
Change-Id: I16cd7730c1e0732253ac52f51010f6b813295aa7
2023-11-03 00:09:19 -07:00

95 lines
3.5 KiB
Python

"""
Author: Weisen Pan
Date: 2023-10-24
"""
import time
import torch
import numpy as np
import torch.nn.functional as F
from datetime import timedelta
from sklearn import metrics
from tqdm import tqdm
from scheduler import WarmUpLR, downLR
def get_time_dif(start_time):
"""Get the time difference between now and the start time."""
elapsed_time = time.time() - start_time
return timedelta(seconds=int(round(elapsed_time)))
def train(config, model, train_iter, dev_iter, test_iter):
start_time = time.time()
model.train()
optimizer = torch.optim.Adam(model.parameters(), lr=config.learning_rate)
warmup_steps = config.num_epochs / 2 * len(train_iter)
scheduler = downLR(optimizer, (config.num_epochs - warmup_steps / len(train_iter)) * len(train_iter))
warmup_scheduler = WarmUpLR(optimizer, warmup_steps)
dev_best_loss = float('inf')
dev_best_acc = 0
test_best_acc = 0
for epoch in range(config.num_epochs):
epoch_loss = 0
predictions, labels = [], []
for trains, label_batch, poss, masks in tqdm(train_iter):
trains, label_batch, poss, masks = [tensor.to(config.device) for tensor in [trains, label_batch, poss, masks]]
outputs = model(trains, poss, masks)
model.zero_grad()
loss = F.cross_entropy(outputs, label_batch)
loss.backward()
optimizer.step()
if epoch < warmup_steps / len(train_iter):
warmup_scheduler.step()
else:
scheduler.step()
epoch_loss += loss.item()
predictions.extend(torch.max(outputs, 1)[1].tolist())
labels.extend(label_batch.tolist())
train_acc = metrics.accuracy_score(labels, predictions)
dev_acc, dev_loss = evaluate(config, model, dev_iter)
if dev_loss < dev_best_loss:
dev_best_loss = dev_loss
if dev_acc > dev_best_acc:
dev_best_acc = dev_acc
test_best_acc = evaluate(config, model, test_iter)[0]
time_dif = get_time_dif(start_time)
print(f'Epoch: {epoch + 1}/{config.num_epochs}, Train Loss: {epoch_loss / len(train_iter):.2f}, Train Acc: {train_acc:.2%}, Dev Loss: {dev_loss:.2f}, Dev Acc: {dev_acc:.2%}, Test Best Acc: {test_best_acc:.2%}, Time: {time_dif}')
test(config, model, test_iter)
def test(config, model, test_iter):
model.eval()
test_acc, test_loss, test_confusion = evaluate(config, model, test_iter, test=True)
print(f'Test Loss: {test_loss:.2f}, Test Acc: {test_acc:.2%}')
print("Confusion Matrix:", test_confusion)
print("Time usage:", get_time_dif(time.time()))
def evaluate(config, model, data_iter, test=False):
model.eval()
total_loss = 0
predictions, labels = [], []
with torch.no_grad():
for texts, labels_batch, poss, masks in data_iter:
texts, poss, masks, labels_batch = [tensor.to(config.device) for tensor in [texts, poss, masks, labels_batch]]
outputs = model(texts, poss, masks)
loss = F.cross_entropy(outputs, labels_batch)
total_loss += loss.item()
predictions.extend(torch.max(outputs, 1)[1].tolist())
labels.extend(labels_batch.tolist())
accuracy = metrics.accuracy_score(labels, predictions)
if test:
confusion = metrics.confusion_matrix(labels, predictions)
return accuracy, total_loss / len(data_iter), confusion
return accuracy, total_loss / len(data_iter)