#!/usr/bin/env python # Copyright 2014 Samsung Electronics. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import argparse import collections import ConfigParser import datetime import logging import operator import re import requests import dateutil.parser as dp import jinja2 import elastic_recheck.elasticRecheck as er import elastic_recheck.query_builder as qb import elastic_recheck.results as er_results # Not all teams actively used elastic recheck for categorizing their # work, so to keep the uncategorized page more meaningful, we exclude # jobs from teams that don't use this toolchain. EXCLUDED_JOBS = ( # Docs team "api-site", "operations-guide", "openstack-manuals", # Ansible "ansible" ) EXCLUDED_JOBS_REGEX = re.compile('(' + '|'.join(EXCLUDED_JOBS) + ')') LOG = logging.getLogger('eruncategorized') def get_options(): parser = argparse.ArgumentParser( description='''Build the list of all uncategorized test runs. Note: This will take a few minutes to run.''') parser.add_argument('--dir', '-d', help="Queries Directory", default="queries") parser.add_argument('-t', '--templatedir', help="Template Directory") parser.add_argument('-o', '--output', help="Output File") parser.add_argument('-c', '--conf', help="Elastic Recheck Configuration " "file to use for data_source options such as " "elastic search url, logstash url, and database " "uri.") return parser.parse_args() def setup_template_engine(directory): path = ["web/share/templates"] if directory: path.append(directory) loader = jinja2.FileSystemLoader(path) env = jinja2.Environment(loader=loader) return env.get_template("uncategorized.html") def all_fails(classifier): """Find all the the fails in the integrated gate. This attempts to find all the build jobs in the integrated gate so we can figure out how good we are doing on total classification. """ all_fails = {} query = ('filename:"console.html" ' 'AND message:"Finished: FAILURE" ' 'AND build_queue:"gate" ' 'AND voting:"1"') results = classifier.hits_by_query(query, size=30000) facets = er_results.FacetSet() facets.detect_facets(results, ["build_uuid"]) for build in facets: for result in facets[build]: # If the job is on the exclude list, skip if re.search(EXCLUDED_JOBS_REGEX, result.build_name): continue # not perfect, but basically an attempt to show the integrated # gate. Would be nice if there was a zuul attr for this in es. if re.search("(^openstack/|devstack|grenade)", result.project): name = result.build_name timestamp = dp.parse(result.timestamp) log = result.log_url.split("console.html")[0] all_fails["%s.%s" % (build, name)] = { 'log': log, 'timestamp': timestamp, 'build_uuid': result.build_uuid } return all_fails def num_fails_per_build_name(all_jobs): counts = collections.defaultdict(int) for f in all_jobs: build, job = f.split('.', 1) counts[job] += 1 return counts def classifying_rate(fails, data, engine, classifier, ls_url): """Builds and prints the classification rate. It's important to know how good a job we are doing, so this tool runs through all the failures we've got and builds the classification rate. For every failure in the gate queue did we find a match for it. """ found_fails = {k: False for (k, v) in fails.iteritems()} for bugnum in data: bug = data[bugnum] for job in bug['failed_jobs']: found_fails[job] = True bad_jobs = collections.defaultdict(int) total_job_failures = collections.defaultdict(int) bad_job_urls = collections.defaultdict(list) count = 0 total = 0 for f in fails: total += 1 build, job = f.split('.', 1) total_job_failures[job] += 1 if found_fails[f] is True: count += 1 else: bad_jobs[job] += 1 bad_job_urls[job].append(fails[f]) for job in bad_job_urls: # sort by timestamp. bad_job_urls[job] = sorted(bad_job_urls[job], key=lambda v: v['timestamp'], reverse=True) # Convert timestamp into string for url in bad_job_urls[job]: url['timestamp'] = url['timestamp'].strftime( "%Y-%m-%dT%H:%M") # setup crm114 query for build_uuid query = ('build_uuid: "%s" ' 'AND error_pr:["-1000.0" TO "-10.0"] ' % url['build_uuid']) logstash_query = qb.encode_logstash_query(query) logstash_url = ('%s/#/dashboard/file/logstash.json?%s' % (ls_url, logstash_query)) results = classifier.hits_by_query(query, size=1) if results: url['crm114'] = logstash_url classifying_rate = collections.defaultdict(int) rate = 0 # avoid a divide by 0 if total > 0: rate = (float(count) / float(total)) * 100.0 classifying_rate['overall'] = "%.1f" % rate for job in bad_jobs: if bad_jobs[job] == 0 and total_job_failures[job] == 0: classifying_rate[job] = 0 else: classifying_rate[job] = "%.1f" % ( 100.0 - (float(bad_jobs[job]) / float(total_job_failures[job])) * 100.0) sort = sorted( bad_jobs.iteritems(), key=operator.itemgetter(1), reverse=True) tvars = { "rate": classifying_rate, "count": count, "total": total, "uncounted": total - count, "jobs": sort, "total_job_failures": total_job_failures, "urls": bad_job_urls, "generated_at": datetime.datetime.utcnow().strftime("%Y-%m-%dT%H:%M") } return engine.render(tvars) def _status_count(results): counts = {} facets = er_results.FacetSet() facets.detect_facets( results, ["build_status", "build_uuid"]) for key in facets: counts[key] = len(facets[key]) return counts def _failure_count(hits): if "FAILURE" in hits: return hits["FAILURE"] else: return 0 def _failed_jobs(results): failed_jobs = [] facets = er_results.FacetSet() facets.detect_facets( results, ["build_status", "build_uuid"]) if "FAILURE" in facets: for build in facets["FAILURE"]: for result in facets["FAILURE"][build]: failed_jobs.append("%s.%s" % (build, result.build_name)) return failed_jobs def _count_fails_per_build_name(hits): facets = er_results.FacetSet() counts = collections.defaultdict(int) facets.detect_facets( hits, ["build_status", "build_name", "build_uuid"]) if "FAILURE" in facets: for build_name in facets["FAILURE"]: counts[build_name] += 1 return counts def _failure_percentage(hits, fails): total_fails_per_build_name = num_fails_per_build_name(fails) fails_per_build_name = _count_fails_per_build_name(hits) per = {} for build in fails_per_build_name: this_job = fails_per_build_name[build] if build in total_fails_per_build_name: total = total_fails_per_build_name[build] per[build] = (float(this_job) / float(total)) * 100.0 return per def collect_metrics(classifier, fails): data = {} for q in classifier.queries: try: results = classifier.hits_by_query(q['query'], size=30000) hits = _status_count(results) data[q['bug']] = { 'fails': _failure_count(hits), 'hits': hits, 'percentages': _failure_percentage(results, fails), 'query': q['query'], 'failed_jobs': _failed_jobs(results) } except requests.exceptions.ReadTimeout: LOG.exception("Failed to collection metrics for query %s" % q['query']) return data def main(): opts = get_options() # Start with defaults es_url = er.ES_URL ls_url = er.LS_URL db_uri = er.DB_URI if opts.conf: config = ConfigParser.ConfigParser({'es_url': er.ES_URL, 'ls_url': er.LS_URL, 'db_uri': er.DB_URI}) config.read(opts.conf) if config.has_section('data_source'): es_url = config.get('data_source', 'es_url') ls_url = config.get('data_source', 'ls_url') db_uri = config.get('data_source', 'db_uri') classifier = er.Classifier(opts.dir, es_url=es_url, db_uri=db_uri) fails = all_fails(classifier) data = collect_metrics(classifier, fails) engine = setup_template_engine(opts.templatedir) html = classifying_rate(fails, data, engine, classifier, ls_url) if opts.output: with open(opts.output, "w") as f: f.write(html) else: print html if __name__ == "__main__": main()