gnocchi: return better 'insufficient data' reason
Change-Id: I571b78eb2aad8089fcc534380677723136e090e8
This commit is contained in:
parent
4e42caa809
commit
169bc31922
@ -17,6 +17,7 @@ import six
|
||||
import stevedore
|
||||
|
||||
from aodh import evaluator
|
||||
from aodh.evaluator import threshold
|
||||
from aodh.i18n import _
|
||||
|
||||
LOG = log.getLogger(__name__)
|
||||
@ -43,8 +44,13 @@ class RuleTarget(object):
|
||||
if not self.evaluated:
|
||||
LOG.debug('Evaluating %(type)s rule: %(rule)s',
|
||||
{'type': self.type, 'rule': self.rule})
|
||||
self.state, self.trending_state, self.statistics, __ = \
|
||||
self.rule_evaluator.evaluate_rule(self.rule)
|
||||
try:
|
||||
self.state, self.trending_state, self.statistics, __, __ = \
|
||||
self.rule_evaluator.evaluate_rule(self.rule)
|
||||
except threshold.InsufficientDataError as e:
|
||||
self.state = evaluator.UNKNOWN
|
||||
self.trending_state = None
|
||||
self.statistics = e.statistics
|
||||
self.evaluated = True
|
||||
|
||||
|
||||
|
@ -48,6 +48,9 @@ class GnocchiBase(threshold.ThresholdEvaluator):
|
||||
LOG.debug('sanitize stats %s', statistics)
|
||||
statistics = [stats[VALUE] for stats in statistics
|
||||
if stats[GRANULARITY] == rule['granularity']]
|
||||
if not statistics:
|
||||
raise threshold.InsufficientDataError(
|
||||
"No datapoint for granularity %s" % rule['granularity'], [])
|
||||
statistics = statistics[-rule['evaluation_periods']:]
|
||||
LOG.debug('pruned statistics to %d', len(statistics))
|
||||
return statistics
|
||||
@ -61,13 +64,28 @@ class GnocchiResourceThresholdEvaluator(GnocchiBase):
|
||||
start=start, stop=end,
|
||||
resource_id=rule['resource_id'],
|
||||
aggregation=rule['aggregation_method'])
|
||||
except exceptions.MetricNotFound:
|
||||
raise threshold.InsufficientDataError(
|
||||
'metric %s for resource %s does not exists' %
|
||||
(rule['metric'], rule['resource_id']), [])
|
||||
except exceptions.ResourceNotFound:
|
||||
raise threshold.InsufficientDataError(
|
||||
'resource %s does not exists' % rule['resource_id'], [])
|
||||
except exceptions.NotFound:
|
||||
LOG.debug('metric %s or resource %s does not exists',
|
||||
rule['metric'], rule['resource_id'])
|
||||
return []
|
||||
# TODO(sileht): gnocchiclient should raise a explicit
|
||||
# exception for AggregationNotFound, this API endpoint
|
||||
# can only raise 3 different 404, so we are safe to
|
||||
# assume this is an AggregationNotFound for now.
|
||||
raise threshold.InsufficientDataError(
|
||||
'aggregation %s does not exist for '
|
||||
'metric %s of resource %s' % (rule['aggregation_method'],
|
||||
rule['metric'],
|
||||
rule['resource_id']),
|
||||
[])
|
||||
except Exception as e:
|
||||
LOG.warning('alarm stats retrieval failed: %s', e)
|
||||
return []
|
||||
msg = 'alarm statistics retrieval failed: %s' % e
|
||||
LOG.warning(msg)
|
||||
raise threshold.InsufficientDataError(msg, [])
|
||||
|
||||
|
||||
class GnocchiAggregationMetricsThresholdEvaluator(GnocchiBase):
|
||||
@ -86,12 +104,23 @@ class GnocchiAggregationMetricsThresholdEvaluator(GnocchiBase):
|
||||
start=start, stop=end,
|
||||
aggregation=rule['aggregation_method'],
|
||||
needed_overlap=0)
|
||||
except exceptions.MetricNotFound:
|
||||
raise threshold.InsufficientDataError(
|
||||
'At least of metrics in %s does not exist' %
|
||||
rule['metrics'], [])
|
||||
except exceptions.NotFound:
|
||||
LOG.debug('metrics %s does not exists', rule['metrics'])
|
||||
return []
|
||||
# TODO(sileht): gnocchiclient should raise a explicit
|
||||
# exception for AggregationNotFound, this API endpoint
|
||||
# can only raise 3 different 404, so we are safe to
|
||||
# assume this is an AggregationNotFound for now.
|
||||
raise threshold.InsufficientDataError(
|
||||
'aggregation %s does not exist for at least one '
|
||||
'metrics in %s' % (rule['aggregation_method'],
|
||||
rule['metrics']), [])
|
||||
except Exception as e:
|
||||
LOG.warning('alarm stats retrieval failed: %s', e)
|
||||
return []
|
||||
msg = 'alarm statistics retrieval failed: %s' % e
|
||||
LOG.warning(msg)
|
||||
raise threshold.InsufficientDataError(msg, [])
|
||||
|
||||
|
||||
class GnocchiAggregationResourcesThresholdEvaluator(GnocchiBase):
|
||||
@ -113,9 +142,18 @@ class GnocchiAggregationResourcesThresholdEvaluator(GnocchiBase):
|
||||
aggregation=rule['aggregation_method'],
|
||||
needed_overlap=0,
|
||||
)
|
||||
except exceptions.MetricNotFound:
|
||||
raise threshold.InsufficientDataError(
|
||||
'metric %s does not exists' % rule['metric'], [])
|
||||
except exceptions.NotFound:
|
||||
LOG.debug('metric %s does not exists', rule['metric'])
|
||||
return []
|
||||
# TODO(sileht): gnocchiclient should raise a explicit
|
||||
# exception for AggregationNotFound, this API endpoint
|
||||
# can only raise 3 different 404, so we are safe to
|
||||
# assume this is an AggregationNotFound for now.
|
||||
raise threshold.InsufficientDataError(
|
||||
'aggregation %s does not exist for at least one '
|
||||
'metric of the query' % rule['aggregation_method'], [])
|
||||
except Exception as e:
|
||||
LOG.warning('alarm stats retrieval failed: %s', e)
|
||||
return []
|
||||
msg = 'alarm statistics retrieval failed: %s' % e
|
||||
LOG.warning(msg)
|
||||
raise threshold.InsufficientDataError(msg, [])
|
||||
|
@ -49,6 +49,13 @@ OPTS = [
|
||||
]
|
||||
|
||||
|
||||
class InsufficientDataError(Exception):
|
||||
def __init__(self, reason, statistics):
|
||||
self.reason = reason
|
||||
self.statistics = statistics
|
||||
super(InsufficientDataError, self).__init__(reason)
|
||||
|
||||
|
||||
class ThresholdEvaluator(evaluator.Evaluator):
|
||||
|
||||
# the sliding evaluation window is extended to allow
|
||||
@ -172,7 +179,9 @@ class ThresholdEvaluator(evaluator.Evaluator):
|
||||
statistics = self._sanitize(alarm_rule, statistics)
|
||||
sufficient = len(statistics) >= alarm_rule['evaluation_periods']
|
||||
if not sufficient:
|
||||
return evaluator.UNKNOWN, None, statistics, len(statistics)
|
||||
raise InsufficientDataError(
|
||||
'%d datapoints are unknown' % alarm_rule['evaluation_periods'],
|
||||
statistics)
|
||||
|
||||
def _compare(value):
|
||||
op = COMPARATORS[alarm_rule['comparison_operator']]
|
||||
@ -188,13 +197,13 @@ class ThresholdEvaluator(evaluator.Evaluator):
|
||||
|
||||
if unequivocal:
|
||||
state = evaluator.ALARM if distilled else evaluator.OK
|
||||
return state, None, statistics, number_outside
|
||||
return state, None, statistics, number_outside, None
|
||||
else:
|
||||
trending_state = evaluator.ALARM if compared[-1] else evaluator.OK
|
||||
return None, trending_state, statistics, number_outside
|
||||
return None, trending_state, statistics, number_outside, None
|
||||
|
||||
def _transition_alarm(self, alarm, state, trending_state, statistics,
|
||||
outside_count):
|
||||
outside_count, unknown_reason):
|
||||
unknown = alarm.state == evaluator.UNKNOWN
|
||||
continuous = alarm.repeat_actions
|
||||
|
||||
@ -213,13 +222,11 @@ class ThresholdEvaluator(evaluator.Evaluator):
|
||||
'actual': len(statistics)})
|
||||
# Reason is not same as log message because we want to keep
|
||||
# consistent since thirdparty software may depend on old format.
|
||||
reason = _('%d datapoints are unknown') % alarm.rule[
|
||||
'evaluation_periods']
|
||||
last = None if not statistics else statistics[-1]
|
||||
reason_data = self._reason_data('unknown',
|
||||
alarm.rule['evaluation_periods'],
|
||||
last)
|
||||
self._refresh(alarm, state, reason, reason_data)
|
||||
self._refresh(alarm, state, unknown_reason, reason_data)
|
||||
|
||||
elif state and (alarm.state != state or continuous):
|
||||
reason, reason_data = self._reason(alarm, statistics, state,
|
||||
@ -232,7 +239,9 @@ class ThresholdEvaluator(evaluator.Evaluator):
|
||||
'within its time constraint.', alarm.alarm_id)
|
||||
return
|
||||
|
||||
state, trending_state, statistics, outside_count = self.evaluate_rule(
|
||||
alarm.rule)
|
||||
self._transition_alarm(alarm, state, trending_state, statistics,
|
||||
outside_count)
|
||||
try:
|
||||
evaluation = self.evaluate_rule(alarm.rule)
|
||||
except InsufficientDataError as e:
|
||||
evaluation = (evaluator.UNKNOWN, None, e.statistics, 0,
|
||||
e.reason)
|
||||
self._transition_alarm(alarm, *evaluation)
|
||||
|
@ -150,8 +150,8 @@ class TestGnocchiEvaluatorBase(base.TestEvaluatorBase):
|
||||
expected = [mock.call(
|
||||
alarm,
|
||||
'ok',
|
||||
('%d datapoints are unknown'
|
||||
% alarm.rule['evaluation_periods']),
|
||||
('No datapoint for granularity %s'
|
||||
% alarm.rule['granularity']),
|
||||
self._reason_data('unknown',
|
||||
alarm.rule['evaluation_periods'],
|
||||
None))
|
||||
|
Loading…
x
Reference in New Issue
Block a user