# # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """ Various HBase helpers """ import copy import datetime import json import bson.json_util from ceilometer import utils DTYPE_NAMES = {'none': 0, 'string': 1, 'integer': 2, 'float': 3, 'datetime': 4} OP_SIGN = {'eq': '=', 'lt': '<', 'le': '<=', 'ne': '!=', 'gt': '>', 'ge': '>='} def _QualifierFilter(op, qualifier): return "QualifierFilter (%s, 'binaryprefix:m_%s')" % (op, qualifier) def timestamp(dt, reverse=True): """Timestamp is count of milliseconds since start of epoch. If reverse=True then timestamp will be reversed. Such a technique is used in HBase rowkey design when period queries are required. Because of the fact that rows are sorted lexicographically it's possible to vary whether the 'oldest' entries will be on top of the table or it should be the newest ones (reversed timestamp case). :param dt: datetime which is translated to timestamp :param reverse: a boolean parameter for reverse or straight count of timestamp in milliseconds :return: count or reversed count of milliseconds since start of epoch """ epoch = datetime.datetime(1970, 1, 1) td = dt - epoch ts = td.microseconds + td.seconds * 1000000 + td.days * 86400000000 return 0x7fffffffffffffff - ts if reverse else ts def make_events_query_from_filter(event_filter): """Return start and stop row for filtering and a query which based on the selected parameter. :param event_filter: storage.EventFilter object. """ q = [] res_q = None start = "%s" % (timestamp(event_filter.start_time, reverse=False) if event_filter.start_time else "") stop = "%s" % (timestamp(event_filter.end_time, reverse=False) if event_filter.end_time else "") if event_filter.event_type: q.append("SingleColumnValueFilter ('f', 'event_type', = , " "'binary:%s')" % dump(event_filter.event_type)) if event_filter.message_id: q.append("RowFilter ( = , 'regexstring:\d*_%s')" % event_filter.message_id) if len(q): res_q = " AND ".join(q) if event_filter.traits_filter: for trait_filter in event_filter.traits_filter: q_trait = make_query(trait_query=True, **trait_filter) if q_trait: if res_q: res_q += " AND " + q_trait else: res_q = q_trait return res_q, start, stop def make_timestamp_query(func, start=None, start_op=None, end=None, end_op=None, bounds_only=False, **kwargs): """Return a filter start and stop row for filtering and a query which based on the fact that CF-name is 'rts'. :param start: Optional start timestamp :param start_op: Optional start timestamp operator, like gt, ge :param end: Optional end timestamp :param end_op: Optional end timestamp operator, like lt, le :param bounds_only: if True than query will not be returned :param func: a function that provide a format of row :param kwargs: kwargs for :param func """ rts_start, rts_end = get_start_end_rts(start, start_op, end, end_op) start_row, end_row = func(rts_start, rts_end, **kwargs) if bounds_only: return start_row, end_row q = [] # We dont need to dump here because get_start_end_rts returns strings if rts_start: q.append("SingleColumnValueFilter ('f', 'rts', <=, 'binary:%s')" % rts_start) if rts_end: q.append("SingleColumnValueFilter ('f', 'rts', >=, 'binary:%s')" % rts_end) res_q = None if len(q): res_q = " AND ".join(q) return start_row, end_row, res_q def get_start_end_rts(start, start_op, end, end_op): rts_start = str(timestamp(start) + 1) if start else "" rts_end = str(timestamp(end) + 1) if end else "" # By default, we are using ge for lower bound and lt for upper bound if start_op == 'gt': rts_start = str(long(rts_start) - 2) if end_op == 'le': rts_end = str(long(rts_end) - 1) return rts_start, rts_end def make_query(metaquery=None, trait_query=None, **kwargs): """Return a filter query string based on the selected parameters. :param metaquery: optional metaquery dict :param trait_query: optional boolean, for trait_query from kwargs :param kwargs: key-value pairs to filter on. Key should be a real column name in db """ q = [] res_q = None # Query for traits differs from others. It is constructed with # SingleColumnValueFilter with the possibility to choose comparision # operator if trait_query: trait_name = kwargs.pop('key') op = kwargs.pop('op', 'eq') for k, v in kwargs.items(): if v is not None: res_q = ("SingleColumnValueFilter " "('f', '%s+%d', %s, 'binary:%s', true, true)" % (trait_name, DTYPE_NAMES[k], OP_SIGN[op], dump(v))) return res_q # Note: we use extended constructor for SingleColumnValueFilter here. # It is explicitly specified that entry should not be returned if CF is not # found in table. for key, value in sorted(kwargs.items()): if value is not None: if key == 'source': q.append("SingleColumnValueFilter " "('f', 's_%s', =, 'binary:%s', true, true)" % (value, dump('1'))) elif key == 'trait_type': q.append("ColumnPrefixFilter('%s')" % value) else: q.append("SingleColumnValueFilter " "('f', '%s', =, 'binary:%s', true, true)" % (key, dump(value))) res_q = None if len(q): res_q = " AND ".join(q) if metaquery: meta_q = [] for k, v in metaquery.items(): meta_q.append( "SingleColumnValueFilter ('f', '%s', =, 'binary:%s', " "true, true)" % ('r_' + k, dump(v))) meta_q = " AND ".join(meta_q) # join query and metaquery if res_q is not None: res_q += " AND " + meta_q else: res_q = meta_q # metaquery only return res_q def get_meter_columns(metaquery, **kwargs): """Return a list of required columns in meter table to be scanned . :param metaquery: optional metaquery dict :param kwargs: key-value pairs to filter on. Key should be a real column name in db """ columns = ['f:message', 'f:recorded_at'] columns.extend(["f:%s" % k for k, v in kwargs.items() if v]) if metaquery: columns.extend(["f:r_%s" % k for k, v in metaquery.items() if v]) return columns def make_sample_query_from_filter(sample_filter, require_meter=True): """Return a query dictionary based on the settings in the filter. :param sample_filter: SampleFilter instance :param require_meter: If true and the filter does not have a meter, raise an error. """ meter = sample_filter.meter if not meter and require_meter: raise RuntimeError('Missing required meter specifier') start_row, end_row, ts_query = make_timestamp_query( make_general_rowkey_scan, start=sample_filter.start, start_op=sample_filter.start_timestamp_op, end=sample_filter.end, end_op=sample_filter.end_timestamp_op, some_id=meter) kwargs = dict(user_id=sample_filter.user, project_id=sample_filter.project, counter_name=meter, resource_id=sample_filter.resource, source=sample_filter.source, message_id=sample_filter.message_id) q = make_query(metaquery=sample_filter.metaquery, **kwargs) if q: ts_query = (" AND " + ts_query) if ts_query else "" res_q = q + ts_query if ts_query else q else: res_q = ts_query if ts_query else None columns = get_meter_columns(metaquery=sample_filter.metaquery, **kwargs) return res_q, start_row, end_row, columns def make_meter_query_for_resource(start_timestamp, start_timestamp_op, end_timestamp, end_timestamp_op, source, query=None): """This method is used when Resource table should be filtered by meters. In this method we are looking into all qualifiers with m_ prefix. :param start_timestamp: meter's timestamp start range. :param start_timestamp_op: meter's start time operator, like ge, gt. :param end_timestamp: meter's timestamp end range. :param end_timestamp_op: meter's end time operator, like lt, le. :param source: source filter. :param query: a query string to concatenate with. """ start_rts, end_rts = get_start_end_rts(start_timestamp, start_timestamp_op, end_timestamp, end_timestamp_op) mq = [] if start_rts: filter_value = start_rts + '+' + source if source else start_rts mq.append(_QualifierFilter("<=", filter_value)) if end_rts: filter_value = end_rts + '+' + source if source else end_rts mq.append(_QualifierFilter(">=", filter_value)) if mq: meter_q = " AND ".join(mq) # If there is a filtering on time_range we need to point that # qualifiers should start with m_. Overwise in case e.g. # QualifierFilter (>=, 'binaryprefix:m_9222030811134775808') # qualifier 's_test' satisfies the filter and will be returned. meter_q = _QualifierFilter("=", '') + " AND " + meter_q query = meter_q if not query else query + " AND " + meter_q return query def make_general_rowkey_scan(rts_start=None, rts_end=None, some_id=None): """If it's filter on some_id without start and end, start_row = some_id while end_row = some_id + MAX_BYTE """ if some_id is None: return None, None if not rts_start: rts_start = chr(127) end_row = "%s_%s" % (some_id, rts_start) start_row = "%s_%s" % (some_id, rts_end) return start_row, end_row def format_meter_reference(c_name, c_type, c_unit, rts, source): """Format reference to meter data. """ return "%s+%s+%s!%s!%s" % (rts, source, c_name, c_type, c_unit) def timestamp_from_record_tuple(record): """Extract timestamp from HBase tuple record """ return record[0]['timestamp'] def resource_id_from_record_tuple(record): """Extract resource_id from HBase tuple record """ return record[0]['resource_id'] def deserialize_entry(entry, get_raw_meta=True): """Return a list of flatten_result, sources, meters and metadata flatten_result contains a dict of simple structures such as 'resource_id':1 sources/meters are the lists of sources and meters correspondingly. metadata is metadata dict. This dict may be returned as flattened if get_raw_meta is False. :param entry: entry from HBase, without row name and timestamp :param get_raw_meta: If true then raw metadata will be returned, if False metadata will be constructed from 'f:r_metadata.' fields """ flatten_result = {} sources = [] meters = [] metadata_flattened = {} for k, v in entry.items(): if k.startswith('f:s_'): sources.append(k[4:]) elif k.startswith('f:r_metadata.'): metadata_flattened[k[len('f:r_metadata.'):]] = load(v) elif k.startswith("f:m_"): meter = (k[4:], load(v)) meters.append(meter) else: flatten_result[k[2:]] = load(v) if get_raw_meta: metadata = flatten_result.get('resource_metadata', {}) else: metadata = metadata_flattened return flatten_result, sources, meters, metadata def serialize_entry(data=None, **kwargs): """Return a dict that is ready to be stored to HBase :param data: dict to be serialized :param kwargs: additional args """ data = data or {} entry_dict = copy.copy(data) entry_dict.update(**kwargs) result = {} for k, v in entry_dict.items(): if k == 'source': # user, project and resource tables may contain several sources. # Besides, resource table may contain several meters. # To make insertion safe we need to store all meters and sources in # a separate cell. For this purpose s_ and m_ prefixes are # introduced. result['f:s_%s' % v] = dump('1') elif k == 'meter': for meter, ts in v.items(): result['f:m_%s' % meter] = dump(ts) elif k == 'resource_metadata': # keep raw metadata as well as flattened to provide # capability with API v2. It will be flattened in another # way on API level. But we need flattened too for quick filtering. flattened_meta = dump_metadata(v) for k, m in flattened_meta.items(): result['f:r_metadata.' + k] = dump(m) result['f:resource_metadata'] = dump(v) else: result['f:' + k] = dump(v) return result def dump_metadata(meta): resource_metadata = {} for key, v in utils.dict_to_keyval(meta): resource_metadata[key] = v return resource_metadata def dump(data): return json.dumps(data, default=bson.json_util.default) def load(data): return json.loads(data, object_hook=object_hook) # We don't want to have tzinfo in decoded json.This object_hook is # overwritten json_util.object_hook for $date def object_hook(dct): if "$date" in dct: dt = bson.json_util.object_hook(dct) return dt.replace(tzinfo=None) return bson.json_util.object_hook(dct)