# # Copyright 2013 Red Hat, Inc # # Author: Eoghan Glynn # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import collections import re from ceilometer.openstack.common.gettextutils import _ from ceilometer.openstack.common import log from ceilometer.openstack.common import timeutils from ceilometer import sample from ceilometer import transformer LOG = log.getLogger(__name__) class Namespace(object): """Encapsulates the namespace wrapping the evaluation of the configured scale factor. This allows nested dicts to be accessed in the attribute style, and missing attributes to yield false when used in a boolean expression. """ def __init__(self, seed): self.__dict__ = collections.defaultdict(lambda: Namespace({})) self.__dict__.update(seed) for k, v in self.__dict__.iteritems(): if isinstance(v, dict): self.__dict__[k] = Namespace(v) def __getattr__(self, attr): return self.__dict__[attr] def __getitem__(self, key): return self.__dict__[key] def __nonzero__(self): return len(self.__dict__) > 0 class ScalingTransformer(transformer.TransformerBase): """Transformer to apply a scaling conversion. """ def __init__(self, source=None, target=None, **kwargs): """Initialize transformer with configured parameters. :param source: dict containing source sample unit :param target: dict containing target sample name, type, unit and scaling factor (a missing value connotes no change) """ source = source or {} target = target or {} self.source = source self.target = target self.scale = target.get('scale') LOG.debug(_('scaling conversion transformer with source:' ' %(source)s target: %(target)s:') % {'source': source, 'target': target}) super(ScalingTransformer, self).__init__(**kwargs) def _scale(self, s): """Apply the scaling factor (either a straight multiplicative factor or else a string to be eval'd). """ ns = Namespace(s.as_dict()) scale = self.scale return ((eval(scale, {}, ns) if isinstance(scale, basestring) else s.volume * scale) if scale else s.volume) def _map(self, s, attr): """Apply the name or unit mapping if configured. """ mapped = None from_ = self.source.get('map_from') to_ = self.target.get('map_to') if from_ and to_: if from_.get(attr) and to_.get(attr): try: mapped = re.sub(from_[attr], to_[attr], getattr(s, attr)) except Exception: pass return mapped or self.target.get(attr, getattr(s, attr)) def _convert(self, s, growth=1): """Transform the appropriate sample fields. """ return sample.Sample( name=self._map(s, 'name'), unit=self._map(s, 'unit'), type=self.target.get('type', s.type), volume=self._scale(s) * growth, user_id=s.user_id, project_id=s.project_id, resource_id=s.resource_id, timestamp=s.timestamp, resource_metadata=s.resource_metadata ) def handle_sample(self, context, s): """Handle a sample, converting if necessary.""" LOG.debug(_('handling sample %s'), (s,)) if (self.source.get('unit', s.unit) == s.unit): s = self._convert(s) LOG.debug(_('converted to: %s'), (s,)) return s class RateOfChangeTransformer(ScalingTransformer): """Transformer based on the rate of change of a sample volume, for example taking the current and previous volumes of a cumulative sample and producing a gauge value based on the proportion of some maximum used. """ def __init__(self, **kwargs): """Initialize transformer with configured parameters. """ super(RateOfChangeTransformer, self).__init__(**kwargs) self.cache = {} self.scale = self.scale or '1' def handle_sample(self, context, s): """Handle a sample, converting if necessary.""" LOG.debug(_('handling sample %s'), (s,)) key = s.name + s.resource_id prev = self.cache.get(key) timestamp = timeutils.parse_isotime(s.timestamp) self.cache[key] = (s.volume, timestamp) if prev: prev_volume = prev[0] prev_timestamp = prev[1] time_delta = timeutils.delta_seconds(prev_timestamp, timestamp) # we only allow negative deltas for noncumulative samples, whereas # for cumulative we assume that a reset has occurred in the interim # so that the current volume gives a lower bound on growth volume_delta = (s.volume - prev_volume if (prev_volume <= s.volume or s.type != sample.TYPE_CUMULATIVE) else s.volume) rate_of_change = ((1.0 * volume_delta / time_delta) if time_delta else 0.0) s = self._convert(s, rate_of_change) LOG.debug(_('converted to: %s'), (s,)) else: LOG.warn(_('dropping sample with no predecessor: %s'), (s,)) s = None return s class AggregatorTransformer(ScalingTransformer): """Transformer that aggregate sample until a threshold or/and a retention_time, and then flush them out in the wild. Example: To aggregate sample by resource_metadata and keep the resource_metadata of the latest received sample; AggregatorTransformer(retention_time=60, resource_metadata='last') To aggregate sample by user_id and resource_metadata and keep the user_id of the first received sample and drop the resource_metadata. AggregatorTransformer(size=15, user_id='first', resource_metadata='drop') """ def __init__(self, size=1, retention_time=None, project_id=None, user_id=None, resource_metadata="last", **kwargs): super(AggregatorTransformer, self).__init__(**kwargs) self.samples = {} self.size = size self.retention_time = retention_time self.initial_timestamp = None self.aggregated_samples = 0 self.key_attributes = [] self.merged_attribute_policy = {} self._init_attribute('project_id', project_id) self._init_attribute('user_id', user_id) self._init_attribute('resource_metadata', resource_metadata, is_droppable=True, mandatory=True) def _init_attribute(self, name, value, is_droppable=False, mandatory=False): drop = ['drop'] if is_droppable else [] if value or mandatory: if value not in ['last', 'first'] + drop: LOG.warn('%s is unknown (%s), using last' % (name, value)) value = 'last' self.merged_attribute_policy[name] = value else: self.key_attributes.append(name) def _get_unique_key(self, s): non_aggregated_keys = "-".join([getattr(s, field) for field in self.key_attributes]) # NOTE(sileht): it assumes, a meter always have the same unit/type return "%s-%s-%s" % (s.name, s.resource_id, non_aggregated_keys) def handle_sample(self, context, sample): if not self.initial_timestamp: self.initial_timestamp = timeutils.parse_strtime( sample.timestamp) self.aggregated_samples += 1 key = self._get_unique_key(sample) if key not in self.samples: self.samples[key] = self._convert(sample) if self.merged_attribute_policy[ 'resource_metadata'] == 'drop': self.samples[key].resource_metadata = {} else: self.samples[key].volume += self._scale(sample) for field in self.merged_attribute_policy: if self.merged_attribute_policy[field] == 'last': setattr(self.samples[key], field, getattr(sample, field)) def flush(self, context): expired = self.retention_time and \ timeutils.is_older_than(self.initial_timestamp, self.retention_time) full = self.aggregated_samples >= self.size if full or expired: x = self.samples.values() self.samples = {} self.aggregated_samples = 0 self.initial_timestamp = None return x return []