Mehdi Abaakouk 4eedba6e80 alarming: add gnocchi alarm rules
Testing the API part of Gnocchi alarms within the Gnocchi tree is
a pain and doesn't really have senses.

So, this change moves the gnocchi alarms rules and evaluator that live
in Gnocchi tree to Ceilometer tree.

This also permits to add these new alarm rules into the documentation.

And add some tests that cannot be done on the gnocchi side.

DocImpact

Change-Id: I1bbc9f904d55b51cd1b3c51dcdfaf58f01bd9075
2015-02-23 16:57:43 +01:00

227 lines
8.7 KiB
Python

#
# Copyright 2015 eNovance
#
# Licensed under the Apache License, Version 2.0 (the "License"); you may
# not use this file except in compliance with the License. You may obtain
# a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
# License for the specific language governing permissions and limitations
# under the License.
import datetime
import operator
from oslo_config import cfg
from oslo_serialization import jsonutils
from oslo_utils import timeutils
import requests
import six.moves
from ceilometer.alarm import evaluator
from ceilometer.i18n import _
from ceilometer import keystone_client
from ceilometer.openstack.common import log
LOG = log.getLogger(__name__)
COMPARATORS = {
'gt': operator.gt,
'lt': operator.lt,
'ge': operator.ge,
'le': operator.le,
'eq': operator.eq,
'ne': operator.ne,
}
OPTS = [
cfg.StrOpt('gnocchi_url',
default="http://localhost:8041",
help='URL to Gnocchi.'),
]
cfg.CONF.register_opts(OPTS, group="alarms")
cfg.CONF.import_opt('http_timeout', 'ceilometer.service')
class GnocchiThresholdEvaluator(evaluator.Evaluator):
# the sliding evaluation window is extended to allow
# for reporting/ingestion lag
look_back = 1
# minimum number of datapoints within sliding window to
# avoid unknown state
quorum = 1
def __init__(self, notifier):
super(GnocchiThresholdEvaluator, self).__init__(notifier)
self.gnocchi_url = cfg.CONF.alarms.gnocchi_url
self._ks_client = None
@property
def ks_client(self):
if self._ks_client is None:
self._ks_client = keystone_client.get_client()
return self._ks_client
def _get_headers(self, content_type="application/json"):
return {
'Content-Type': content_type,
'X-Auth-Token': self.ks_client.auth_token,
}
def _statistics(self, alarm, start, end):
"""Retrieve statistics over the current window."""
if alarm.type == 'gnocchi_metrics_threshold':
url = ("%s/v1/metric_aggregation/?"
"aggregation=%s&start=%s&end=%s&%s") % (
self.gnocchi_url,
alarm.rule['aggregation_method'],
start, end,
"&".join("metric=%s" % m
for m in alarm.rule['metrics']))
elif alarm.type == 'gnocchi_resources_threshold':
url = ("%s/v1/resource/%s/%s/metric/%s/measures?"
"aggregation=%s&start=%s&end=%s") % (
self.gnocchi_url,
alarm.rule['resource_type'],
alarm.rule['resource_constraint'],
alarm.rule['metric'],
alarm.rule['aggregation_method'],
start, end)
LOG.debug(_('stats query %s') % url)
try:
r = requests.get(url, headers=self._get_headers())
except Exception:
LOG.exception(_('alarm stats retrieval failed'))
return []
if int(r.status_code / 100) != 2:
LOG.exception(_('alarm stats retrieval failed: %s') % r.text)
return []
else:
return jsonutils.loads(r.text)
@classmethod
def _bound_duration(cls, alarm):
"""Bound the duration of the statistics query."""
now = timeutils.utcnow()
# when exclusion of weak datapoints is enabled, we extend
# the look-back period so as to allow a clearer sample count
# trend to be established
window = (alarm.rule['granularity'] *
(alarm.rule['evaluation_periods'] + cls.look_back))
start = now - datetime.timedelta(seconds=window)
LOG.debug(_('query stats from %(start)s to '
'%(now)s') % {'start': start, 'now': now})
return start.isoformat(), now.isoformat()
def _sufficient(self, alarm, statistics):
"""Check for the sufficiency of the data for evaluation.
Ensure there is sufficient data for evaluation, transitioning to
unknown otherwise.
"""
sufficient = len(statistics) >= self.quorum
if not sufficient and alarm.state != evaluator.UNKNOWN:
reason = _('%d datapoints are unknown') % alarm.rule[
'evaluation_periods']
reason_data = self._reason_data('unknown',
alarm.rule['evaluation_periods'],
None)
self._refresh(alarm, evaluator.UNKNOWN, reason, reason_data)
return sufficient
@staticmethod
def _reason_data(disposition, count, most_recent):
"""Create a reason data dictionary for this evaluator type."""
return {'type': 'threshold', 'disposition': disposition,
'count': count, 'most_recent': most_recent}
@classmethod
def _reason(cls, alarm, statistics, distilled, state):
"""Fabricate reason string."""
count = len(statistics)
disposition = 'inside' if state == evaluator.OK else 'outside'
last = statistics[-1]
transition = alarm.state != state
reason_data = cls._reason_data(disposition, count, last)
if transition:
return (_('Transition to %(state)s due to %(count)d samples'
' %(disposition)s threshold, most recent:'
' %(most_recent)s')
% dict(reason_data, state=state)), reason_data
return (_('Remaining as %(state)s due to %(count)d samples'
' %(disposition)s threshold, most recent: %(most_recent)s')
% dict(reason_data, state=state)), reason_data
def _transition(self, alarm, statistics, compared):
"""Transition alarm state if necessary.
The transition rules are currently hardcoded as:
- transitioning from a known state requires an unequivocal
set of datapoints
- transitioning from unknown is on the basis of the most
recent datapoint if equivocal
Ultimately this will be policy-driven.
"""
distilled = all(compared)
unequivocal = distilled or not any(compared)
unknown = alarm.state == evaluator.UNKNOWN
continuous = alarm.repeat_actions
if unequivocal:
state = evaluator.ALARM if distilled else evaluator.OK
reason, reason_data = self._reason(alarm, statistics,
distilled, state)
if alarm.state != state or continuous:
self._refresh(alarm, state, reason, reason_data)
elif unknown or continuous:
trending_state = evaluator.ALARM if compared[-1] else evaluator.OK
state = trending_state if unknown else alarm.state
reason, reason_data = self._reason(alarm, statistics,
distilled, state)
self._refresh(alarm, state, reason, reason_data)
@staticmethod
def _select_best_granularity(alarm, statistics):
"""Return the datapoints that correspond to the alarm granularity"""
# TODO(sileht): if there's no direct match, but there is an archive
# policy with granularity that's an even divisor or the period,
# we could potentially do a mean-of-means (or max-of-maxes or whatever,
# but not a stddev-of-stddevs).
return [stats[2] for stats in statistics
if stats[1] == alarm.rule['granularity']]
def evaluate(self, alarm):
if not self.within_time_constraint(alarm):
LOG.debug(_('Attempted to evaluate alarm %s, but it is not '
'within its time constraint.') % alarm.alarm_id)
return
start, end = self._bound_duration(alarm)
statistics = self._statistics(alarm, start, end)
statistics = self._select_best_granularity(alarm, statistics)
if self._sufficient(alarm, statistics):
def _compare(value):
op = COMPARATORS[alarm.rule['comparison_operator']]
limit = alarm.rule['threshold']
LOG.debug(_('comparing value %(value)s against threshold'
' %(limit)s') %
{'value': value, 'limit': limit})
return op(value, limit)
self._transition(alarm,
statistics,
list(six.moves.map(_compare, statistics)))