Gordon Chung b5dfb0d97e full pep8 compliance (part 2)
final step to pep8 compliance

Change-Id: Ibe44f55f9415dc8cc380521debee609a20a67416
2013-11-21 12:35:01 -05:00

169 lines
6.2 KiB
Python

# -*- encoding: utf-8 -*-
#
# Copyright © 2013 Red Hat, Inc
#
# Author: Eoghan Glynn <eglynn@redhat.com>
# Author: Mehdi Abaakouk <mehdi.abaakouk@enovance.com>
#
# Licensed under the Apache License, Version 2.0 (the "License"); you may
# not use this file except in compliance with the License. You may obtain
# a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
# License for the specific language governing permissions and limitations
# under the License.
import datetime
import operator
from ceilometer.alarm import evaluator
from ceilometer.openstack.common.gettextutils import _ # noqa
from ceilometer.openstack.common import log
from ceilometer.openstack.common import timeutils
LOG = log.getLogger(__name__)
COMPARATORS = {
'gt': operator.gt,
'lt': operator.lt,
'ge': operator.ge,
'le': operator.le,
'eq': operator.eq,
'ne': operator.ne,
}
class ThresholdEvaluator(evaluator.Evaluator):
# the sliding evaluation window is extended to allow
# for reporting/ingestion lag
look_back = 1
# minimum number of datapoints within sliding window to
# avoid unknown state
quorum = 1
@classmethod
def _bound_duration(cls, alarm, constraints):
"""Bound the duration of the statistics query."""
now = timeutils.utcnow()
window = (alarm.rule['period'] *
(alarm.rule['evaluation_periods'] + cls.look_back))
start = now - datetime.timedelta(seconds=window)
LOG.debug(_('query stats from %(start)s to '
'%(now)s') % {'start': start, 'now': now})
after = dict(field='timestamp', op='ge', value=start.isoformat())
before = dict(field='timestamp', op='le', value=now.isoformat())
constraints.extend([before, after])
return constraints
@staticmethod
def _sanitize(alarm, statistics):
"""Sanitize statistics.
Ultimately this will be the hook for the exclusion of chaotic
datapoints for example.
"""
LOG.debug(_('sanitize stats %s') % statistics)
# in practice statistics are always sorted by period start, not
# strictly required by the API though
statistics = statistics[:alarm.rule['evaluation_periods']]
LOG.debug(_('pruned statistics to %d') % len(statistics))
return statistics
def _statistics(self, alarm, query):
"""Retrieve statistics over the current window."""
LOG.debug(_('stats query %s') % query)
try:
return self._client.statistics.list(
meter_name=alarm.rule['meter_name'], q=query,
period=alarm.rule['period'])
except Exception:
LOG.exception(_('alarm stats retrieval failed'))
return []
def _sufficient(self, alarm, statistics):
"""Ensure there is sufficient data for evaluation,
transitioning to unknown otherwise.
"""
sufficient = len(statistics) >= self.quorum
if not sufficient and alarm.state != evaluator.UNKNOWN:
reason = _('%d datapoints are unknown') % alarm.rule[
'evaluation_periods']
self._refresh(alarm, evaluator.UNKNOWN, reason)
return sufficient
@staticmethod
def _reason(alarm, statistics, distilled, state):
"""Fabricate reason string."""
count = len(statistics)
disposition = 'inside' if state == evaluator.OK else 'outside'
last = getattr(statistics[-1], alarm.rule['statistic'])
transition = alarm.state != state
if transition:
return (_('Transition to %(state)s due to %(count)d samples'
' %(disposition)s threshold, most recent: %(last)s') %
{'state': state, 'count': count,
'disposition': disposition, 'last': last})
return (_('Remaining as %(state)s due to %(count)d samples'
' %(disposition)s threshold, most recent: %(last)s') %
{'state': state, 'count': count,
'disposition': disposition, 'last': last})
def _transition(self, alarm, statistics, compared):
"""Transition alarm state if necessary.
The transition rules are currently hardcoded as:
- transitioning from a known state requires an unequivocal
set of datapoints
- transitioning from unknown is on the basis of the most
recent datapoint if equivocal
Ultimately this will be policy-driven.
"""
distilled = all(compared)
unequivocal = distilled or not any(compared)
unknown = alarm.state == evaluator.UNKNOWN
continuous = alarm.repeat_actions
if unequivocal:
state = evaluator.ALARM if distilled else evaluator.OK
reason = self._reason(alarm, statistics, distilled, state)
if alarm.state != state or continuous:
self._refresh(alarm, state, reason)
elif unknown or continuous:
trending_state = evaluator.ALARM if compared[-1] else evaluator.OK
state = trending_state if unknown else alarm.state
reason = self._reason(alarm, statistics, distilled, state)
self._refresh(alarm, state, reason)
def evaluate(self, alarm):
query = self._bound_duration(
alarm,
alarm.rule['query']
)
statistics = self._sanitize(
alarm,
self._statistics(alarm, query)
)
if self._sufficient(alarm, statistics):
def _compare(stat):
op = COMPARATORS[alarm.rule['comparison_operator']]
value = getattr(stat, alarm.rule['statistic'])
limit = alarm.rule['threshold']
LOG.debug(_('comparing value %(value)s against threshold'
' %(limit)s') %
{'value': value, 'limit': limit})
return op(value, limit)
self._transition(alarm,
statistics,
map(_compare, statistics))