62008d4e5b
Some drivers/modules might raise NotImplementedError whereas we would expect things to work. Skipping test when such an error is raised would be a bad idea, we would know the test failed. So let's switch to a custom NotImplementedError and let's skip test only if this one is raised. Closes-Bug: #1369556 Change-Id: Ie88a281787218f9aba13b6e662eb4d49d3e685d0
947 lines
37 KiB
Python
947 lines
37 KiB
Python
#
|
|
# Copyright 2012 New Dream Network, LLC (DreamHost)
|
|
# Copyright 2013 eNovance
|
|
# Copyright 2014 Red Hat, Inc
|
|
#
|
|
# Authors: Doug Hellmann <doug.hellmann@dreamhost.com>
|
|
# Julien Danjou <julien@danjou.info>
|
|
# Eoghan Glynn <eglynn@redhat.com>
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License"); you may
|
|
# not use this file except in compliance with the License. You may obtain
|
|
# a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
|
# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
|
# License for the specific language governing permissions and limitations
|
|
# under the License.
|
|
"""MongoDB storage backend"""
|
|
|
|
import calendar
|
|
import copy
|
|
import datetime
|
|
import json
|
|
import operator
|
|
import uuid
|
|
|
|
import bson.code
|
|
import bson.objectid
|
|
from oslo.config import cfg
|
|
from oslo.utils import timeutils
|
|
import pymongo
|
|
import six
|
|
|
|
import ceilometer
|
|
from ceilometer.openstack.common import log
|
|
from ceilometer import storage
|
|
from ceilometer.storage import base
|
|
from ceilometer.storage import models
|
|
from ceilometer.storage.mongo import utils as pymongo_utils
|
|
from ceilometer.storage import pymongo_base
|
|
from ceilometer import utils
|
|
|
|
cfg.CONF.import_opt('time_to_live', 'ceilometer.storage',
|
|
group="database")
|
|
|
|
LOG = log.getLogger(__name__)
|
|
|
|
|
|
AVAILABLE_CAPABILITIES = {
|
|
'resources': {'query': {'simple': True,
|
|
'metadata': True}},
|
|
'statistics': {'groupby': True,
|
|
'query': {'simple': True,
|
|
'metadata': True},
|
|
'aggregation': {'standard': True,
|
|
'selectable': {'max': True,
|
|
'min': True,
|
|
'sum': True,
|
|
'avg': True,
|
|
'count': True,
|
|
'stddev': True,
|
|
'cardinality': True}}}
|
|
}
|
|
|
|
|
|
class Connection(pymongo_base.Connection):
|
|
"""Put the data into a MongoDB database
|
|
|
|
Collections::
|
|
|
|
- meter
|
|
- the raw incoming data
|
|
- resource
|
|
- the metadata for resources
|
|
- { _id: uuid of resource,
|
|
metadata: metadata dictionaries
|
|
user_id: uuid
|
|
project_id: uuid
|
|
meter: [ array of {counter_name: string, counter_type: string,
|
|
counter_unit: string} ]
|
|
}
|
|
"""
|
|
|
|
CAPABILITIES = utils.update_nested(pymongo_base.Connection.CAPABILITIES,
|
|
AVAILABLE_CAPABILITIES)
|
|
CONNECTION_POOL = pymongo_utils.ConnectionPool()
|
|
|
|
REDUCE_GROUP_CLEAN = bson.code.Code("""
|
|
function ( curr, result ) {
|
|
if (result.resources.indexOf(curr.resource_id) < 0)
|
|
result.resources.push(curr.resource_id);
|
|
}
|
|
""")
|
|
|
|
STANDARD_AGGREGATES = dict(
|
|
emit_initial=dict(
|
|
sum='',
|
|
count='',
|
|
avg='',
|
|
min='',
|
|
max=''
|
|
),
|
|
emit_body=dict(
|
|
sum='sum: this.counter_volume,',
|
|
count='count: NumberInt(1),',
|
|
avg='acount: NumberInt(1), asum: this.counter_volume,',
|
|
min='min: this.counter_volume,',
|
|
max='max: this.counter_volume,'
|
|
),
|
|
reduce_initial=dict(
|
|
sum='',
|
|
count='',
|
|
avg='',
|
|
min='',
|
|
max=''
|
|
),
|
|
reduce_body=dict(
|
|
sum='sum: values[0].sum,',
|
|
count='count: values[0].count,',
|
|
avg='acount: values[0].acount, asum: values[0].asum,',
|
|
min='min: values[0].min,',
|
|
max='max: values[0].max,'
|
|
),
|
|
reduce_computation=dict(
|
|
sum='res.sum += values[i].sum;',
|
|
count='res.count = NumberInt(res.count + values[i].count);',
|
|
avg=('res.acount = NumberInt(res.acount + values[i].acount);'
|
|
'res.asum += values[i].asum;'),
|
|
min='if ( values[i].min < res.min ) {res.min = values[i].min;}',
|
|
max='if ( values[i].max > res.max ) {res.max = values[i].max;}'
|
|
),
|
|
finalize=dict(
|
|
sum='',
|
|
count='',
|
|
avg='value.avg = value.asum / value.acount;',
|
|
min='',
|
|
max=''
|
|
),
|
|
)
|
|
|
|
UNPARAMETERIZED_AGGREGATES = dict(
|
|
emit_initial=dict(
|
|
stddev=(
|
|
''
|
|
)
|
|
),
|
|
emit_body=dict(
|
|
stddev='sdsum: this.counter_volume,'
|
|
'sdcount: 1,'
|
|
'weighted_distances: 0,'
|
|
'stddev: 0,'
|
|
),
|
|
reduce_initial=dict(
|
|
stddev=''
|
|
),
|
|
reduce_body=dict(
|
|
stddev='sdsum: values[0].sdsum,'
|
|
'sdcount: values[0].sdcount,'
|
|
'weighted_distances: values[0].weighted_distances,'
|
|
'stddev: values[0].stddev,'
|
|
),
|
|
reduce_computation=dict(
|
|
stddev=(
|
|
'var deviance = (res.sdsum / res.sdcount) - values[i].sdsum;'
|
|
'var weight = res.sdcount / ++res.sdcount;'
|
|
'res.weighted_distances += (Math.pow(deviance, 2) * weight);'
|
|
'res.sdsum += values[i].sdsum;'
|
|
)
|
|
),
|
|
finalize=dict(
|
|
stddev=(
|
|
'value.stddev = Math.sqrt(value.weighted_distances /'
|
|
' value.sdcount);'
|
|
)
|
|
),
|
|
)
|
|
|
|
PARAMETERIZED_AGGREGATES = dict(
|
|
validate=dict(
|
|
cardinality=lambda p: p in ['resource_id', 'user_id', 'project_id',
|
|
'source']
|
|
),
|
|
emit_initial=dict(
|
|
cardinality=(
|
|
'aggregate["cardinality/%(aggregate_param)s"] = 1;'
|
|
'var distinct_%(aggregate_param)s = {};'
|
|
'distinct_%(aggregate_param)s[this["%(aggregate_param)s"]]'
|
|
' = true;'
|
|
)
|
|
),
|
|
emit_body=dict(
|
|
cardinality=(
|
|
'distinct_%(aggregate_param)s : distinct_%(aggregate_param)s,'
|
|
'%(aggregate_param)s : this["%(aggregate_param)s"],'
|
|
)
|
|
),
|
|
reduce_initial=dict(
|
|
cardinality=''
|
|
),
|
|
reduce_body=dict(
|
|
cardinality=(
|
|
'aggregate : values[0].aggregate,'
|
|
'distinct_%(aggregate_param)s:'
|
|
' values[0].distinct_%(aggregate_param)s,'
|
|
'%(aggregate_param)s : values[0]["%(aggregate_param)s"],'
|
|
)
|
|
),
|
|
reduce_computation=dict(
|
|
cardinality=(
|
|
'if (!(values[i]["%(aggregate_param)s"] in'
|
|
' res.distinct_%(aggregate_param)s)) {'
|
|
' res.distinct_%(aggregate_param)s[values[i]'
|
|
' ["%(aggregate_param)s"]] = true;'
|
|
' res.aggregate["cardinality/%(aggregate_param)s"] += 1;}'
|
|
)
|
|
),
|
|
finalize=dict(
|
|
cardinality=''
|
|
),
|
|
)
|
|
|
|
EMIT_STATS_COMMON = """
|
|
var aggregate = {};
|
|
%(aggregate_initial_placeholder)s
|
|
emit(%(key_val)s, { unit: this.counter_unit,
|
|
aggregate : aggregate,
|
|
%(aggregate_body_placeholder)s
|
|
groupby : %(groupby_val)s,
|
|
duration_start : this.timestamp,
|
|
duration_end : this.timestamp,
|
|
period_start : %(period_start_val)s,
|
|
period_end : %(period_end_val)s} )
|
|
"""
|
|
|
|
MAP_STATS_PERIOD_VAR = """
|
|
var period = %(period)d * 1000;
|
|
var period_first = %(period_first)d * 1000;
|
|
var period_start = period_first
|
|
+ (Math.floor(new Date(this.timestamp.getTime()
|
|
- period_first) / period)
|
|
* period);
|
|
"""
|
|
|
|
MAP_STATS_GROUPBY_VAR = """
|
|
var groupby_fields = %(groupby_fields)s;
|
|
var groupby = {};
|
|
var groupby_key = {};
|
|
|
|
for ( var i=0; i<groupby_fields.length; i++ ) {
|
|
groupby[groupby_fields[i]] = this[groupby_fields[i]]
|
|
groupby_key[groupby_fields[i]] = this[groupby_fields[i]]
|
|
}
|
|
"""
|
|
|
|
PARAMS_MAP_STATS = {
|
|
'key_val': '\'statistics\'',
|
|
'groupby_val': 'null',
|
|
'period_start_val': 'this.timestamp',
|
|
'period_end_val': 'this.timestamp',
|
|
'aggregate_initial_placeholder': '%(aggregate_initial_val)s',
|
|
'aggregate_body_placeholder': '%(aggregate_body_val)s'
|
|
}
|
|
|
|
MAP_STATS = bson.code.Code("function () {" +
|
|
EMIT_STATS_COMMON % PARAMS_MAP_STATS +
|
|
"}")
|
|
|
|
PARAMS_MAP_STATS_PERIOD = {
|
|
'key_val': 'period_start',
|
|
'groupby_val': 'null',
|
|
'period_start_val': 'new Date(period_start)',
|
|
'period_end_val': 'new Date(period_start + period)',
|
|
'aggregate_initial_placeholder': '%(aggregate_initial_val)s',
|
|
'aggregate_body_placeholder': '%(aggregate_body_val)s'
|
|
}
|
|
|
|
MAP_STATS_PERIOD = bson.code.Code(
|
|
"function () {" +
|
|
MAP_STATS_PERIOD_VAR +
|
|
EMIT_STATS_COMMON % PARAMS_MAP_STATS_PERIOD +
|
|
"}")
|
|
|
|
PARAMS_MAP_STATS_GROUPBY = {
|
|
'key_val': 'groupby_key',
|
|
'groupby_val': 'groupby',
|
|
'period_start_val': 'this.timestamp',
|
|
'period_end_val': 'this.timestamp',
|
|
'aggregate_initial_placeholder': '%(aggregate_initial_val)s',
|
|
'aggregate_body_placeholder': '%(aggregate_body_val)s'
|
|
}
|
|
|
|
MAP_STATS_GROUPBY = bson.code.Code(
|
|
"function () {" +
|
|
MAP_STATS_GROUPBY_VAR +
|
|
EMIT_STATS_COMMON % PARAMS_MAP_STATS_GROUPBY +
|
|
"}")
|
|
|
|
PARAMS_MAP_STATS_PERIOD_GROUPBY = {
|
|
'key_val': 'groupby_key',
|
|
'groupby_val': 'groupby',
|
|
'period_start_val': 'new Date(period_start)',
|
|
'period_end_val': 'new Date(period_start + period)',
|
|
'aggregate_initial_placeholder': '%(aggregate_initial_val)s',
|
|
'aggregate_body_placeholder': '%(aggregate_body_val)s'
|
|
}
|
|
|
|
MAP_STATS_PERIOD_GROUPBY = bson.code.Code(
|
|
"function () {" +
|
|
MAP_STATS_PERIOD_VAR +
|
|
MAP_STATS_GROUPBY_VAR +
|
|
" groupby_key['period_start'] = period_start\n" +
|
|
EMIT_STATS_COMMON % PARAMS_MAP_STATS_PERIOD_GROUPBY +
|
|
"}")
|
|
|
|
REDUCE_STATS = bson.code.Code("""
|
|
function (key, values) {
|
|
%(aggregate_initial_val)s
|
|
var res = { unit: values[0].unit,
|
|
aggregate: values[0].aggregate,
|
|
%(aggregate_body_val)s
|
|
groupby: values[0].groupby,
|
|
period_start: values[0].period_start,
|
|
period_end: values[0].period_end,
|
|
duration_start: values[0].duration_start,
|
|
duration_end: values[0].duration_end };
|
|
for ( var i=1; i<values.length; i++ ) {
|
|
%(aggregate_computation_val)s
|
|
if ( values[i].duration_start < res.duration_start )
|
|
res.duration_start = values[i].duration_start;
|
|
if ( values[i].duration_end > res.duration_end )
|
|
res.duration_end = values[i].duration_end;
|
|
}
|
|
return res;
|
|
}
|
|
""")
|
|
|
|
FINALIZE_STATS = bson.code.Code("""
|
|
function (key, value) {
|
|
%(aggregate_val)s
|
|
value.duration = (value.duration_end - value.duration_start) / 1000;
|
|
value.period = NumberInt((value.period_end - value.period_start)
|
|
/ 1000);
|
|
return value;
|
|
}""")
|
|
|
|
SORT_OPERATION_MAPPING = {'desc': (pymongo.DESCENDING, '$lt'),
|
|
'asc': (pymongo.ASCENDING, '$gt')}
|
|
|
|
MAP_RESOURCES = bson.code.Code("""
|
|
function () {
|
|
emit(this.resource_id,
|
|
{user_id: this.user_id,
|
|
project_id: this.project_id,
|
|
source: this.source,
|
|
first_timestamp: this.timestamp,
|
|
last_timestamp: this.timestamp,
|
|
metadata: this.resource_metadata})
|
|
}""")
|
|
|
|
REDUCE_RESOURCES = bson.code.Code("""
|
|
function (key, values) {
|
|
var merge = {user_id: values[0].user_id,
|
|
project_id: values[0].project_id,
|
|
source: values[0].source,
|
|
first_timestamp: values[0].first_timestamp,
|
|
last_timestamp: values[0].last_timestamp,
|
|
metadata: values[0].metadata}
|
|
values.forEach(function(value) {
|
|
if (merge.first_timestamp - value.first_timestamp > 0) {
|
|
merge.first_timestamp = value.first_timestamp;
|
|
merge.user_id = value.user_id;
|
|
merge.project_id = value.project_id;
|
|
merge.source = value.source;
|
|
} else if (merge.last_timestamp - value.last_timestamp <= 0) {
|
|
merge.last_timestamp = value.last_timestamp;
|
|
merge.metadata = value.metadata;
|
|
}
|
|
});
|
|
return merge;
|
|
}""")
|
|
|
|
_GENESIS = datetime.datetime(year=datetime.MINYEAR, month=1, day=1)
|
|
_APOCALYPSE = datetime.datetime(year=datetime.MAXYEAR, month=12, day=31,
|
|
hour=23, minute=59, second=59)
|
|
|
|
def __init__(self, url):
|
|
|
|
# NOTE(jd) Use our own connection pooling on top of the Pymongo one.
|
|
# We need that otherwise we overflow the MongoDB instance with new
|
|
# connection since we instanciate a Pymongo client each time someone
|
|
# requires a new storage connection.
|
|
self.conn = self.CONNECTION_POOL.connect(url)
|
|
|
|
# Require MongoDB 2.4 to use $setOnInsert
|
|
if self.conn.server_info()['versionArray'] < [2, 4]:
|
|
raise storage.StorageBadVersion("Need at least MongoDB 2.4")
|
|
|
|
connection_options = pymongo.uri_parser.parse_uri(url)
|
|
self.db = getattr(self.conn, connection_options['database'])
|
|
if connection_options.get('username'):
|
|
self.db.authenticate(connection_options['username'],
|
|
connection_options['password'])
|
|
|
|
# NOTE(jd) Upgrading is just about creating index, so let's do this
|
|
# on connection to be sure at least the TTL is correcly updated if
|
|
# needed.
|
|
self.upgrade()
|
|
|
|
def upgrade(self):
|
|
# Establish indexes
|
|
#
|
|
# We need variations for user_id vs. project_id because of the
|
|
# way the indexes are stored in b-trees. The user_id and
|
|
# project_id values are usually mutually exclusive in the
|
|
# queries, so the database won't take advantage of an index
|
|
# including both.
|
|
name_qualifier = dict(user_id='', project_id='project_')
|
|
background = dict(user_id=False, project_id=True)
|
|
for primary in ['user_id', 'project_id']:
|
|
name = 'resource_%sidx' % name_qualifier[primary]
|
|
self.db.resource.ensure_index([
|
|
(primary, pymongo.ASCENDING),
|
|
('source', pymongo.ASCENDING),
|
|
], name=name, background=background[primary])
|
|
|
|
name = 'meter_%sidx' % name_qualifier[primary]
|
|
self.db.meter.ensure_index([
|
|
('resource_id', pymongo.ASCENDING),
|
|
(primary, pymongo.ASCENDING),
|
|
('counter_name', pymongo.ASCENDING),
|
|
('timestamp', pymongo.ASCENDING),
|
|
('source', pymongo.ASCENDING),
|
|
], name=name, background=background[primary])
|
|
|
|
self.db.resource.ensure_index([('last_sample_timestamp',
|
|
pymongo.DESCENDING)],
|
|
name='last_sample_timestamp_idx',
|
|
sparse=True)
|
|
self.db.meter.ensure_index([('timestamp', pymongo.DESCENDING)],
|
|
name='timestamp_idx')
|
|
# remove API v1 related table
|
|
self.db.user.drop()
|
|
self.db.project.drop()
|
|
|
|
indexes = self.db.meter.index_information()
|
|
|
|
ttl = cfg.CONF.database.time_to_live
|
|
|
|
if ttl <= 0:
|
|
if 'meter_ttl' in indexes:
|
|
self.db.meter.drop_index('meter_ttl')
|
|
return
|
|
|
|
if 'meter_ttl' in indexes:
|
|
# NOTE(sileht): manually check expireAfterSeconds because
|
|
# ensure_index doesn't update index options if the index already
|
|
# exists
|
|
if ttl == indexes['meter_ttl'].get('expireAfterSeconds', -1):
|
|
return
|
|
|
|
self.db.meter.drop_index('meter_ttl')
|
|
|
|
self.db.meter.create_index(
|
|
[('timestamp', pymongo.ASCENDING)],
|
|
expireAfterSeconds=ttl,
|
|
name='meter_ttl'
|
|
)
|
|
|
|
def clear(self):
|
|
self.conn.drop_database(self.db)
|
|
# Connection will be reopened automatically if needed
|
|
self.conn.close()
|
|
|
|
def record_metering_data(self, data):
|
|
"""Write the data to the backend storage system.
|
|
|
|
:param data: a dictionary such as returned by
|
|
ceilometer.meter.meter_message_from_counter
|
|
"""
|
|
# Record the updated resource metadata - we use $setOnInsert to
|
|
# unconditionally insert sample timestamps and resource metadata
|
|
# (in the update case, this must be conditional on the sample not
|
|
# being out-of-order)
|
|
resource = self.db.resource.find_and_modify(
|
|
{'_id': data['resource_id']},
|
|
{'$set': {'project_id': data['project_id'],
|
|
'user_id': data['user_id'],
|
|
'source': data['source'],
|
|
},
|
|
'$setOnInsert': {'metadata': data['resource_metadata'],
|
|
'first_sample_timestamp': data['timestamp'],
|
|
'last_sample_timestamp': data['timestamp'],
|
|
},
|
|
'$addToSet': {'meter': {'counter_name': data['counter_name'],
|
|
'counter_type': data['counter_type'],
|
|
'counter_unit': data['counter_unit'],
|
|
},
|
|
},
|
|
},
|
|
upsert=True,
|
|
new=True,
|
|
)
|
|
|
|
# only update last sample timestamp if actually later (the usual
|
|
# in-order case)
|
|
last_sample_timestamp = resource.get('last_sample_timestamp')
|
|
if (last_sample_timestamp is None or
|
|
last_sample_timestamp <= data['timestamp']):
|
|
self.db.resource.update(
|
|
{'_id': data['resource_id']},
|
|
{'$set': {'metadata': data['resource_metadata'],
|
|
'last_sample_timestamp': data['timestamp']}}
|
|
)
|
|
|
|
# only update first sample timestamp if actually earlier (the unusual
|
|
# out-of-order case)
|
|
# NOTE: a null first sample timestamp is not updated as this indicates
|
|
# a pre-existing resource document dating from before we started
|
|
# recording these timestamps in the resource collection
|
|
first_sample_timestamp = resource.get('first_sample_timestamp')
|
|
if (first_sample_timestamp is not None and
|
|
first_sample_timestamp > data['timestamp']):
|
|
self.db.resource.update(
|
|
{'_id': data['resource_id']},
|
|
{'$set': {'first_sample_timestamp': data['timestamp']}}
|
|
)
|
|
|
|
# Record the raw data for the meter. Use a copy so we do not
|
|
# modify a data structure owned by our caller (the driver adds
|
|
# a new key '_id').
|
|
record = copy.copy(data)
|
|
record['recorded_at'] = timeutils.utcnow()
|
|
self.db.meter.insert(record)
|
|
|
|
def clear_expired_metering_data(self, ttl):
|
|
"""Clear expired data from the backend storage system.
|
|
|
|
Clearing occurs according to the time-to-live.
|
|
:param ttl: Number of seconds to keep records for.
|
|
"""
|
|
results = self.db.meter.group(
|
|
key={},
|
|
condition={},
|
|
reduce=self.REDUCE_GROUP_CLEAN,
|
|
initial={
|
|
'resources': [],
|
|
}
|
|
)[0]
|
|
|
|
self.db.resource.remove({'_id': {'$nin': results['resources']}})
|
|
|
|
@staticmethod
|
|
def _get_marker(db_collection, marker_pairs):
|
|
"""Return the mark document according to the attribute-value pairs.
|
|
|
|
:param db_collection: Database collection that be query.
|
|
:param maker_pairs: Attribute-value pairs filter.
|
|
"""
|
|
if db_collection is None:
|
|
return
|
|
if not marker_pairs:
|
|
return
|
|
ret = db_collection.find(marker_pairs, limit=2)
|
|
|
|
if ret.count() == 0:
|
|
raise base.NoResultFound
|
|
elif ret.count() > 1:
|
|
raise base.MultipleResultsFound
|
|
else:
|
|
_ret = ret.__getitem__(0)
|
|
return _ret
|
|
|
|
@classmethod
|
|
def _recurse_sort_keys(cls, sort_keys, marker, flag):
|
|
_first = sort_keys[0]
|
|
value = marker[_first]
|
|
if len(sort_keys) == 1:
|
|
return {_first: {flag: value}}
|
|
else:
|
|
criteria_equ = {_first: {'eq': value}}
|
|
criteria_cmp = cls._recurse_sort_keys(sort_keys[1:], marker, flag)
|
|
return dict(criteria_equ, ** criteria_cmp)
|
|
|
|
@classmethod
|
|
def _build_paginate_query(cls, marker, sort_keys=None, sort_dir='desc'):
|
|
"""Returns a query with sorting / pagination.
|
|
|
|
Pagination works by requiring sort_key and sort_dir.
|
|
We use the last item in previous page as the 'marker' for pagination.
|
|
So we return values that follow the passed marker in the order.
|
|
:param q: The query dict passed in.
|
|
:param marker: the last item of the previous page; we return the next
|
|
results after this item.
|
|
:param sort_keys: array of attributes by which results be sorted.
|
|
:param sort_dir: direction in which results be sorted (asc, desc).
|
|
:return: sort parameters, query to use
|
|
"""
|
|
all_sort = []
|
|
sort_keys = sort_keys or []
|
|
all_sort, _op = cls._build_sort_instructions(sort_keys, sort_dir)
|
|
|
|
if marker is not None:
|
|
sort_criteria_list = []
|
|
|
|
for i in range(len(sort_keys)):
|
|
# NOTE(fengqian): Generate the query criteria recursively.
|
|
# sort_keys=[k1, k2, k3], maker_value=[v1, v2, v3]
|
|
# sort_flags = ['$lt', '$gt', 'lt'].
|
|
# The query criteria should be
|
|
# {'k3': {'$lt': 'v3'}, 'k2': {'eq': 'v2'}, 'k1':
|
|
# {'eq': 'v1'}},
|
|
# {'k2': {'$gt': 'v2'}, 'k1': {'eq': 'v1'}},
|
|
# {'k1': {'$lt': 'v1'}} with 'OR' operation.
|
|
# Each recurse will generate one items of three.
|
|
sort_criteria_list.append(cls._recurse_sort_keys(
|
|
sort_keys[:(len(sort_keys) - i)],
|
|
marker, _op))
|
|
|
|
metaquery = {"$or": sort_criteria_list}
|
|
else:
|
|
metaquery = {}
|
|
|
|
return all_sort, metaquery
|
|
|
|
@classmethod
|
|
def _build_sort_instructions(cls, sort_keys=None, sort_dir='desc'):
|
|
"""Returns a sort_instruction and paging operator.
|
|
|
|
Sort instructions are used in the query to determine what attributes
|
|
to sort on and what direction to use.
|
|
:param q: The query dict passed in.
|
|
:param sort_keys: array of attributes by which results be sorted.
|
|
:param sort_dir: direction in which results be sorted (asc, desc).
|
|
:return: sort instructions and paging operator
|
|
"""
|
|
sort_keys = sort_keys or []
|
|
sort_instructions = []
|
|
_sort_dir, operation = cls.SORT_OPERATION_MAPPING.get(
|
|
sort_dir, cls.SORT_OPERATION_MAPPING['desc'])
|
|
|
|
for _sort_key in sort_keys:
|
|
_instruction = (_sort_key, _sort_dir)
|
|
sort_instructions.append(_instruction)
|
|
|
|
return sort_instructions, operation
|
|
|
|
@classmethod
|
|
def paginate_query(cls, q, db_collection, limit=None, marker=None,
|
|
sort_keys=None, sort_dir='desc'):
|
|
"""Returns a query result with sorting / pagination.
|
|
|
|
Pagination works by requiring sort_key and sort_dir.
|
|
We use the last item in previous page as the 'marker' for pagination.
|
|
So we return values that follow the passed marker in the order.
|
|
|
|
:param q: the query dict passed in.
|
|
:param db_collection: Database collection that be query.
|
|
:param limit: maximum number of items to return.
|
|
:param marker: the last item of the previous page; we return the next
|
|
results after this item.
|
|
:param sort_keys: array of attributes by which results be sorted.
|
|
:param sort_dir: direction in which results be sorted (asc, desc).
|
|
|
|
:return: The query with sorting/pagination added.
|
|
"""
|
|
|
|
sort_keys = sort_keys or []
|
|
all_sort, query = cls._build_paginate_query(marker,
|
|
sort_keys,
|
|
sort_dir)
|
|
q.update(query)
|
|
|
|
# NOTE(Fengqian): MongoDB collection.find can not handle limit
|
|
# when it equals None, it will raise TypeError, so we treat
|
|
# None as 0 for the value of limit.
|
|
if limit is None:
|
|
limit = 0
|
|
return db_collection.find(q, limit=limit, sort=all_sort)
|
|
|
|
def _get_time_constrained_resources(self, query,
|
|
start_timestamp, start_timestamp_op,
|
|
end_timestamp, end_timestamp_op,
|
|
metaquery, resource):
|
|
"""Return an iterable of models.Resource instances
|
|
|
|
Items are constrained by sample timestamp.
|
|
:param query: project/user/source query
|
|
:param start_timestamp: modified timestamp start range.
|
|
:param start_timestamp_op: start time operator, like gt, ge.
|
|
:param end_timestamp: modified timestamp end range.
|
|
:param end_timestamp_op: end time operator, like lt, le.
|
|
:param metaquery: dict with metadata to match on.
|
|
:param resource: resource filter.
|
|
"""
|
|
if resource is not None:
|
|
query['resource_id'] = resource
|
|
|
|
# Add resource_ prefix so it matches the field in the db
|
|
query.update(dict(('resource_' + k, v)
|
|
for (k, v) in six.iteritems(metaquery)))
|
|
|
|
# FIXME(dhellmann): This may not perform very well,
|
|
# but doing any better will require changing the database
|
|
# schema and that will need more thought than I have time
|
|
# to put into it today.
|
|
# Look for resources matching the above criteria and with
|
|
# samples in the time range we care about, then change the
|
|
# resource query to return just those resources by id.
|
|
ts_range = pymongo_utils.make_timestamp_range(start_timestamp,
|
|
end_timestamp,
|
|
start_timestamp_op,
|
|
end_timestamp_op)
|
|
if ts_range:
|
|
query['timestamp'] = ts_range
|
|
|
|
sort_keys = base._handle_sort_key('resource')
|
|
sort_instructions = self._build_sort_instructions(sort_keys)[0]
|
|
|
|
# use a unique collection name for the results collection,
|
|
# as result post-sorting (as oppposed to reduce pre-sorting)
|
|
# is not possible on an inline M-R
|
|
out = 'resource_list_%s' % uuid.uuid4()
|
|
self.db.meter.map_reduce(self.MAP_RESOURCES,
|
|
self.REDUCE_RESOURCES,
|
|
out=out,
|
|
sort={'resource_id': 1},
|
|
query=query)
|
|
|
|
try:
|
|
for r in self.db[out].find(sort=sort_instructions):
|
|
resource = r['value']
|
|
yield models.Resource(
|
|
resource_id=r['_id'],
|
|
user_id=resource['user_id'],
|
|
project_id=resource['project_id'],
|
|
first_sample_timestamp=resource['first_timestamp'],
|
|
last_sample_timestamp=resource['last_timestamp'],
|
|
source=resource['source'],
|
|
metadata=resource['metadata'])
|
|
finally:
|
|
self.db[out].drop()
|
|
|
|
def _get_floating_resources(self, query, metaquery, resource):
|
|
"""Return an iterable of models.Resource instances
|
|
|
|
Items are unconstrained by timestamp.
|
|
:param query: project/user/source query
|
|
:param metaquery: dict with metadata to match on.
|
|
:param resource: resource filter.
|
|
"""
|
|
if resource is not None:
|
|
query['_id'] = resource
|
|
|
|
query.update(dict((k, v)
|
|
for (k, v) in six.iteritems(metaquery)))
|
|
|
|
keys = base._handle_sort_key('resource')
|
|
sort_keys = ['last_sample_timestamp' if i == 'timestamp' else i
|
|
for i in keys]
|
|
sort_instructions = self._build_sort_instructions(sort_keys)[0]
|
|
|
|
for r in self.db.resource.find(query, sort=sort_instructions):
|
|
yield models.Resource(
|
|
resource_id=r['_id'],
|
|
user_id=r['user_id'],
|
|
project_id=r['project_id'],
|
|
first_sample_timestamp=r.get('first_sample_timestamp',
|
|
self._GENESIS),
|
|
last_sample_timestamp=r.get('last_sample_timestamp',
|
|
self._APOCALYPSE),
|
|
source=r['source'],
|
|
metadata=r['metadata'])
|
|
|
|
def get_resources(self, user=None, project=None, source=None,
|
|
start_timestamp=None, start_timestamp_op=None,
|
|
end_timestamp=None, end_timestamp_op=None,
|
|
metaquery=None, resource=None, pagination=None):
|
|
"""Return an iterable of models.Resource instances
|
|
|
|
:param user: Optional ID for user that owns the resource.
|
|
:param project: Optional ID for project that owns the resource.
|
|
:param source: Optional source filter.
|
|
:param start_timestamp: Optional modified timestamp start range.
|
|
:param start_timestamp_op: Optional start time operator, like gt, ge.
|
|
:param end_timestamp: Optional modified timestamp end range.
|
|
:param end_timestamp_op: Optional end time operator, like lt, le.
|
|
:param metaquery: Optional dict with metadata to match on.
|
|
:param resource: Optional resource filter.
|
|
:param pagination: Optional pagination query.
|
|
"""
|
|
if pagination:
|
|
raise ceilometer.NotImplementedError('Pagination not implemented')
|
|
|
|
metaquery = metaquery or {}
|
|
|
|
query = {}
|
|
if user is not None:
|
|
query['user_id'] = user
|
|
if project is not None:
|
|
query['project_id'] = project
|
|
if source is not None:
|
|
query['source'] = source
|
|
|
|
if start_timestamp or end_timestamp:
|
|
return self._get_time_constrained_resources(query,
|
|
start_timestamp,
|
|
start_timestamp_op,
|
|
end_timestamp,
|
|
end_timestamp_op,
|
|
metaquery, resource)
|
|
else:
|
|
return self._get_floating_resources(query, metaquery, resource)
|
|
|
|
def _aggregate_param(self, fragment_key, aggregate):
|
|
fragment_map = self.STANDARD_AGGREGATES[fragment_key]
|
|
|
|
if not aggregate:
|
|
return ''.join([f for f in fragment_map.values()])
|
|
|
|
fragments = ''
|
|
|
|
for a in aggregate:
|
|
if a.func in self.STANDARD_AGGREGATES[fragment_key]:
|
|
fragment_map = self.STANDARD_AGGREGATES[fragment_key]
|
|
fragments += fragment_map[a.func]
|
|
elif a.func in self.UNPARAMETERIZED_AGGREGATES[fragment_key]:
|
|
fragment_map = self.UNPARAMETERIZED_AGGREGATES[fragment_key]
|
|
fragments += fragment_map[a.func]
|
|
elif a.func in self.PARAMETERIZED_AGGREGATES[fragment_key]:
|
|
fragment_map = self.PARAMETERIZED_AGGREGATES[fragment_key]
|
|
v = self.PARAMETERIZED_AGGREGATES['validate'].get(a.func)
|
|
if not (v and v(a.param)):
|
|
raise storage.StorageBadAggregate('Bad aggregate: %s.%s'
|
|
% (a.func, a.param))
|
|
params = dict(aggregate_param=a.param)
|
|
fragments += (fragment_map[a.func] % params)
|
|
else:
|
|
raise ceilometer.NotImplementedError(
|
|
'Selectable aggregate function %s'
|
|
' is not supported' % a.func)
|
|
|
|
return fragments
|
|
|
|
def get_meter_statistics(self, sample_filter, period=None, groupby=None,
|
|
aggregate=None):
|
|
"""Return an iterable of models.Statistics instance.
|
|
|
|
Items are containing meter statistics described by the query
|
|
parameters. The filter must have a meter value set.
|
|
"""
|
|
if (groupby and
|
|
set(groupby) - set(['user_id', 'project_id',
|
|
'resource_id', 'source'])):
|
|
raise ceilometer.NotImplementedError(
|
|
"Unable to group by these fields")
|
|
|
|
q = pymongo_utils.make_query_from_filter(sample_filter)
|
|
|
|
if period:
|
|
if sample_filter.start:
|
|
period_start = sample_filter.start
|
|
else:
|
|
period_start = self.db.meter.find(
|
|
limit=1, sort=[('timestamp',
|
|
pymongo.ASCENDING)])[0]['timestamp']
|
|
period_start = int(calendar.timegm(period_start.utctimetuple()))
|
|
map_params = {'period': period,
|
|
'period_first': period_start,
|
|
'groupby_fields': json.dumps(groupby)}
|
|
if groupby:
|
|
map_fragment = self.MAP_STATS_PERIOD_GROUPBY
|
|
else:
|
|
map_fragment = self.MAP_STATS_PERIOD
|
|
else:
|
|
if groupby:
|
|
map_params = {'groupby_fields': json.dumps(groupby)}
|
|
map_fragment = self.MAP_STATS_GROUPBY
|
|
else:
|
|
map_params = dict()
|
|
map_fragment = self.MAP_STATS
|
|
|
|
sub = self._aggregate_param
|
|
|
|
map_params['aggregate_initial_val'] = sub('emit_initial', aggregate)
|
|
map_params['aggregate_body_val'] = sub('emit_body', aggregate)
|
|
|
|
map_stats = map_fragment % map_params
|
|
|
|
reduce_params = dict(
|
|
aggregate_initial_val=sub('reduce_initial', aggregate),
|
|
aggregate_body_val=sub('reduce_body', aggregate),
|
|
aggregate_computation_val=sub('reduce_computation', aggregate)
|
|
)
|
|
reduce_stats = self.REDUCE_STATS % reduce_params
|
|
|
|
finalize_params = dict(aggregate_val=sub('finalize', aggregate))
|
|
finalize_stats = self.FINALIZE_STATS % finalize_params
|
|
|
|
results = self.db.meter.map_reduce(
|
|
map_stats,
|
|
reduce_stats,
|
|
{'inline': 1},
|
|
finalize=finalize_stats,
|
|
query=q,
|
|
)
|
|
|
|
# FIXME(terriyu) Fix get_meter_statistics() so we don't use sorted()
|
|
# to return the results
|
|
return sorted(
|
|
(self._stats_result_to_model(r['value'], groupby, aggregate)
|
|
for r in results['results']),
|
|
key=operator.attrgetter('period_start'))
|
|
|
|
@staticmethod
|
|
def _stats_result_aggregates(result, aggregate):
|
|
stats_args = {}
|
|
for attr in ['count', 'min', 'max', 'sum', 'avg']:
|
|
if attr in result:
|
|
stats_args[attr] = result[attr]
|
|
|
|
if aggregate:
|
|
stats_args['aggregate'] = {}
|
|
for a in aggregate:
|
|
ak = '%s%s' % (a.func, '/%s' % a.param if a.param else '')
|
|
if ak in result:
|
|
stats_args['aggregate'][ak] = result[ak]
|
|
elif 'aggregate' in result:
|
|
stats_args['aggregate'][ak] = result['aggregate'].get(ak)
|
|
return stats_args
|
|
|
|
@staticmethod
|
|
def _stats_result_to_model(result, groupby, aggregate):
|
|
stats_args = Connection._stats_result_aggregates(result, aggregate)
|
|
stats_args['unit'] = result['unit']
|
|
stats_args['duration'] = result['duration']
|
|
stats_args['duration_start'] = result['duration_start']
|
|
stats_args['duration_end'] = result['duration_end']
|
|
stats_args['period'] = result['period']
|
|
stats_args['period_start'] = result['period_start']
|
|
stats_args['period_end'] = result['period_end']
|
|
stats_args['groupby'] = (dict(
|
|
(g, result['groupby'][g]) for g in groupby) if groupby else None)
|
|
return models.Statistics(**stats_args)
|