Nejc Saje 8dc8a97da6 Adds time constraints to alarms
This patch allows alarms to have time constraints specified.
If one or more time constraints are specified, the alarm is
evaluated only if the current time is within at least one
time constraint.

A field 'time_constraints' is added to the alarm model
that holds a list of the time constraints. Each time constraint
has the fields
- name		the name of the constraint
- description	description, default is auto-generated from start and duration
- start		starting point(s) of the constraint, in cron format
- duration	duration of the constraint, in seconds
- timezone	optional timezone information

Change-Id: I2d1bcd6728affc31834d7e2f3a0bdd570b2413bb
Blueprint: time-constrained-alarms
2014-03-04 14:13:58 +00:00

204 lines
7.9 KiB
Python

# -*- encoding: utf-8 -*-
#
# Copyright © 2013 Red Hat, Inc
#
# Author: Eoghan Glynn <eglynn@redhat.com>
# Author: Mehdi Abaakouk <mehdi.abaakouk@enovance.com>
#
# Licensed under the Apache License, Version 2.0 (the "License"); you may
# not use this file except in compliance with the License. You may obtain
# a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
# License for the specific language governing permissions and limitations
# under the License.
import datetime
import operator
from ceilometer.alarm import evaluator
from ceilometer.alarm.evaluator import utils
from ceilometer.openstack.common.gettextutils import _ # noqa
from ceilometer.openstack.common import log
from ceilometer.openstack.common import timeutils
LOG = log.getLogger(__name__)
COMPARATORS = {
'gt': operator.gt,
'lt': operator.lt,
'ge': operator.ge,
'le': operator.le,
'eq': operator.eq,
'ne': operator.ne,
}
class ThresholdEvaluator(evaluator.Evaluator):
# the sliding evaluation window is extended to allow
# for reporting/ingestion lag
look_back = 1
# minimum number of datapoints within sliding window to
# avoid unknown state
quorum = 1
@classmethod
def _bound_duration(cls, alarm, constraints):
"""Bound the duration of the statistics query."""
now = timeutils.utcnow()
# when exclusion of weak datapoints is enabled, we extend
# the look-back period so as to allow a clearer sample count
# trend to be established
look_back = (cls.look_back if not alarm.rule.get('exclude_outliers')
else alarm.rule['evaluation_periods'])
window = (alarm.rule['period'] *
(alarm.rule['evaluation_periods'] + look_back))
start = now - datetime.timedelta(seconds=window)
LOG.debug(_('query stats from %(start)s to '
'%(now)s') % {'start': start, 'now': now})
after = dict(field='timestamp', op='ge', value=start.isoformat())
before = dict(field='timestamp', op='le', value=now.isoformat())
constraints.extend([before, after])
return constraints
@staticmethod
def _sanitize(alarm, statistics):
"""Sanitize statistics.
"""
LOG.debug(_('sanitize stats %s') % statistics)
if alarm.rule.get('exclude_outliers'):
key = operator.attrgetter('count')
mean = utils.mean(statistics, key)
stddev = utils.stddev(statistics, key, mean)
lower = mean - 2 * stddev
upper = mean + 2 * stddev
inliers, outliers = utils.anomalies(statistics, key, lower, upper)
if outliers:
LOG.debug(_('excluded weak datapoints with sample counts %s'),
[s.count for s in outliers])
statistics = inliers
else:
LOG.debug('no excluded weak datapoints')
# in practice statistics are always sorted by period start, not
# strictly required by the API though
statistics = statistics[-alarm.rule['evaluation_periods']:]
LOG.debug(_('pruned statistics to %d') % len(statistics))
return statistics
def _statistics(self, alarm, query):
"""Retrieve statistics over the current window."""
LOG.debug(_('stats query %s') % query)
try:
return self._client.statistics.list(
meter_name=alarm.rule['meter_name'], q=query,
period=alarm.rule['period'])
except Exception:
LOG.exception(_('alarm stats retrieval failed'))
return []
def _sufficient(self, alarm, statistics):
"""Ensure there is sufficient data for evaluation,
transitioning to unknown otherwise.
"""
sufficient = len(statistics) >= self.quorum
if not sufficient and alarm.state != evaluator.UNKNOWN:
reason = _('%d datapoints are unknown') % alarm.rule[
'evaluation_periods']
reason_data = self._reason_data('unknown',
alarm.rule['evaluation_periods'],
None)
self._refresh(alarm, evaluator.UNKNOWN, reason, reason_data)
return sufficient
@staticmethod
def _reason_data(disposition, count, most_recent):
"""Create a reason data dictionary for this evaluator type.
"""
return {'type': 'threshold', 'disposition': disposition,
'count': count, 'most_recent': most_recent}
@classmethod
def _reason(cls, alarm, statistics, distilled, state):
"""Fabricate reason string."""
count = len(statistics)
disposition = 'inside' if state == evaluator.OK else 'outside'
last = getattr(statistics[-1], alarm.rule['statistic'])
transition = alarm.state != state
reason_data = cls._reason_data(disposition, count, last)
if transition:
return (_('Transition to %(state)s due to %(count)d samples'
' %(disposition)s threshold, most recent:'
' %(most_recent)s')
% dict(reason_data, state=state)), reason_data
return (_('Remaining as %(state)s due to %(count)d samples'
' %(disposition)s threshold, most recent: %(most_recent)s')
% dict(reason_data, state=state)), reason_data
def _transition(self, alarm, statistics, compared):
"""Transition alarm state if necessary.
The transition rules are currently hardcoded as:
- transitioning from a known state requires an unequivocal
set of datapoints
- transitioning from unknown is on the basis of the most
recent datapoint if equivocal
Ultimately this will be policy-driven.
"""
distilled = all(compared)
unequivocal = distilled or not any(compared)
unknown = alarm.state == evaluator.UNKNOWN
continuous = alarm.repeat_actions
if unequivocal:
state = evaluator.ALARM if distilled else evaluator.OK
reason, reason_data = self._reason(alarm, statistics,
distilled, state)
if alarm.state != state or continuous:
self._refresh(alarm, state, reason, reason_data)
elif unknown or continuous:
trending_state = evaluator.ALARM if compared[-1] else evaluator.OK
state = trending_state if unknown else alarm.state
reason, reason_data = self._reason(alarm, statistics,
distilled, state)
self._refresh(alarm, state, reason, reason_data)
def evaluate(self, alarm):
if not self.within_time_constraint(alarm):
LOG.debug(_('Attempted to evaluate alarm %s, but it is not '
'within its time constraint.') % alarm.alarm_id)
return
query = self._bound_duration(
alarm,
alarm.rule['query']
)
statistics = self._sanitize(
alarm,
self._statistics(alarm, query)
)
if self._sufficient(alarm, statistics):
def _compare(stat):
op = COMPARATORS[alarm.rule['comparison_operator']]
value = getattr(stat, alarm.rule['statistic'])
limit = alarm.rule['threshold']
LOG.debug(_('comparing value %(value)s against threshold'
' %(limit)s') %
{'value': value, 'limit': limit})
return op(value, limit)
self._transition(alarm,
statistics,
map(_compare, statistics))