f8ccabfcc5
The idea is to not re-emit cpu samples from the cpu_pipeline by default, but instead simplify the pipeline.yaml by allowing these original samples to be emitted by the general-purpose pipeline as before, thus avoiding unintended double-publication. Now only the derived samples would be emitted from the scaling or rate of change transformers. Change-Id: I12623181d289fc0ee3cdb6fcdbacf8e76e53d244
146 lines
5.5 KiB
Python
146 lines
5.5 KiB
Python
# -*- encoding: utf-8 -*-
|
|
#
|
|
# Copyright © 2013 Red Hat, Inc
|
|
#
|
|
# Author: Eoghan Glynn <eglynn@redhat.com>
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License"); you may
|
|
# not use this file except in compliance with the License. You may obtain
|
|
# a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
|
# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
|
# License for the specific language governing permissions and limitations
|
|
# under the License.
|
|
|
|
from collections import defaultdict
|
|
|
|
from ceilometer import counter as ceilocounter
|
|
from ceilometer.openstack.common import log
|
|
from ceilometer.openstack.common import timeutils
|
|
from ceilometer import transformer
|
|
|
|
LOG = log.getLogger(__name__)
|
|
|
|
|
|
class Namespace(object):
|
|
"""Encapsulates the namespace wrapping the evaluation of the
|
|
configured scale factor. This allows nested dicts to be
|
|
accessed in the attribute style, and missing attributes
|
|
to yield false when used in a boolean expression.
|
|
"""
|
|
def __init__(self, seed):
|
|
self.__dict__ = defaultdict(lambda: Namespace({}))
|
|
self.__dict__.update(seed)
|
|
for k, v in self.__dict__.iteritems():
|
|
if isinstance(v, dict):
|
|
self.__dict__[k] = Namespace(v)
|
|
|
|
def __getattr__(self, attr):
|
|
return self.__dict__[attr]
|
|
|
|
def __getitem__(self, key):
|
|
return self.__dict__[key]
|
|
|
|
def __nonzero__(self):
|
|
return len(self.__dict__) > 0
|
|
|
|
|
|
class ScalingTransformer(transformer.TransformerBase):
|
|
"""Transformer to apply a scaling conversion.
|
|
"""
|
|
|
|
def __init__(self, source={}, target={}, **kwargs):
|
|
"""Initialize transformer with configured parameters.
|
|
|
|
:param source: dict containing source counter unit
|
|
:param target: dict containing target counter name, type,
|
|
unit and scaling factor (a missing value
|
|
connotes no change)
|
|
"""
|
|
self.source = source
|
|
self.target = target
|
|
LOG.debug(_('scaling conversion transformer with source:'
|
|
' %(source)s target: %(target)s:') % locals())
|
|
super(ScalingTransformer, self).__init__(**kwargs)
|
|
|
|
@staticmethod
|
|
def _scale(counter, scale):
|
|
"""Apply the scaling factor (either a straight multiplicative
|
|
factor or else a string to be eval'd).
|
|
"""
|
|
ns = Namespace(counter._asdict())
|
|
|
|
return ((eval(scale, {}, ns) if isinstance(scale, basestring)
|
|
else counter.volume * scale) if scale else counter.volume)
|
|
|
|
def _convert(self, counter, growth=1):
|
|
"""Transform the appropriate counter fields.
|
|
"""
|
|
scale = self.target.get('scale')
|
|
return ceilocounter.Counter(
|
|
name=self.target.get('name', counter.name),
|
|
unit=self.target.get('unit', counter.unit),
|
|
type=self.target.get('type', counter.type),
|
|
volume=self._scale(counter, scale) * growth,
|
|
user_id=counter.user_id,
|
|
project_id=counter.project_id,
|
|
resource_id=counter.resource_id,
|
|
timestamp=counter.timestamp,
|
|
resource_metadata=counter.resource_metadata
|
|
)
|
|
|
|
def handle_sample(self, context, counter, source):
|
|
"""Handle a sample, converting if necessary."""
|
|
LOG.debug('handling counter %s', (counter,))
|
|
if (self.source.get('unit', counter.unit) == counter.unit):
|
|
counter = self._convert(counter)
|
|
LOG.debug(_('converted to: %s') % (counter,))
|
|
return counter
|
|
|
|
|
|
class RateOfChangeTransformer(ScalingTransformer):
|
|
"""Transformer based on the rate of change of a counter volume,
|
|
for example taking the current and previous volumes of a
|
|
cumulative counter and producing a gauge value based on the
|
|
proportion of some maximum used.
|
|
"""
|
|
|
|
def __init__(self, **kwargs):
|
|
"""Initialize transformer with configured parameters.
|
|
"""
|
|
self.cache = {}
|
|
super(RateOfChangeTransformer, self).__init__(**kwargs)
|
|
|
|
def handle_sample(self, context, counter, source):
|
|
"""Handle a sample, converting if necessary."""
|
|
LOG.debug('handling counter %s', (counter,))
|
|
key = counter.name + counter.resource_id
|
|
prev = self.cache.get(key)
|
|
timestamp = timeutils.parse_isotime(counter.timestamp)
|
|
self.cache[key] = (counter.volume, timestamp)
|
|
|
|
if prev:
|
|
prev_volume = prev[0]
|
|
prev_timestamp = prev[1]
|
|
time_delta = timeutils.delta_seconds(prev_timestamp, timestamp)
|
|
# we only allow negative deltas for noncumulative counters, whereas
|
|
# for cumulative we assume that a reset has occurred in the interim
|
|
# so that the current volume gives a lower bound on growth
|
|
volume_delta = (counter.volume - prev_volume
|
|
if (prev_volume <= counter.volume or
|
|
counter.type != ceilocounter.TYPE_CUMULATIVE)
|
|
else counter.volume)
|
|
rate_of_change = ((1.0 * volume_delta / time_delta)
|
|
if time_delta else 0.0)
|
|
|
|
counter = self._convert(counter, rate_of_change)
|
|
LOG.debug(_('converted to: %s') % (counter,))
|
|
else:
|
|
LOG.warn(_('dropping counter with no predecessor: %s') % counter)
|
|
counter = None
|
|
return counter
|