monasca-persister/monasca_persister/repositories/cassandra/metric_batch.py
Jui Chandwaskar 6abefff1b2 Update pep8 checks
* Update max line length to 100
* Clean up codes for pep8 checks from tox.ini

Change-Id: I974c0c31dc51784506cbf54b87bc450f2334845e
Signed-off-by: Jui Chandwaskar <jchandwaskar@op5.com>
2018-04-11 16:21:51 +02:00

157 lines
5.4 KiB
Python

# (C) Copyright 2017 SUSE LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
# implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from cassandra.query import BatchStatement
from cassandra.query import BatchType
from oslo_log import log
LOG = log.getLogger(__name__)
class MetricBatch(object):
def __init__(self, metadata, load_balance_policy, batch_limit):
self.metadata = metadata
self.batch_limit = batch_limit
self.lb_policy = load_balance_policy
self.metric_queries = dict()
self.dimension_queries = dict()
self.dimension_metric_queries = dict()
self.metric_dimension_queries = dict()
self.measurement_queries = dict()
def batch_query_by_token(self, bound_stmt, query_map):
token = self.metadata.token_map.token_class.from_key(bound_stmt.routing_key)
queue = query_map.get(token, None)
if not queue:
queue = []
batch = BatchStatement(BatchType.UNLOGGED)
batch.add(bound_stmt)
queue.append((batch, Counter(1)))
query_map[token] = queue
else:
(batch, counter) = queue[-1]
if counter.value() < self.batch_limit:
batch.add(bound_stmt)
counter.increment()
else:
batch = BatchStatement(BatchType.UNLOGGED)
batch.add(bound_stmt)
queue.append((batch, Counter(1)))
def add_metric_query(self, bound_stmt):
self.batch_query_by_token(bound_stmt, self.metric_queries)
def add_dimension_query(self, bound_stmt):
self.batch_query_by_token(bound_stmt, self.dimension_queries)
def add_dimension_metric_query(self, bound_stmt):
self.batch_query_by_token(bound_stmt, self.dimension_metric_queries)
def add_metric_dimension_query(self, bound_stmt):
self.batch_query_by_token(bound_stmt, self.metric_dimension_queries)
def add_measurement_query(self, bound_stmt):
self.batch_query_by_replicas(bound_stmt, self.measurement_queries)
def batch_query_by_replicas(self, bound_stmt, query_map):
hosts = tuple(
self.lb_policy.make_query_plan(
working_keyspace=bound_stmt.keyspace,
query=bound_stmt))
queue = query_map.get(hosts, None)
if not queue:
queue = []
batch = BatchStatement(BatchType.UNLOGGED)
batch.add(bound_stmt)
queue.append((batch, Counter(1)))
query_map[hosts] = queue
else:
(batch, counter) = queue[-1]
if counter.value() < 30:
batch.add(bound_stmt)
counter.increment()
else:
batch = BatchStatement(BatchType.UNLOGGED)
batch.add(bound_stmt)
queue.append((batch, Counter(1)))
def clear(self):
self.metric_queries.clear()
self.dimension_queries.clear()
self.dimension_metric_queries.clear()
self.metric_dimension_queries.clear()
self.measurement_queries.clear()
@staticmethod
def log_token_batch_map(name, query_map):
LOG.info('%s : Size: %s; Tokens: |%s|' %
(name, len(query_map),
'|'.join(['%s: %s' % (
token,
','.join([str(counter.value()) for (batch, counter) in queue]))
for token, queue in query_map.items()])))
@staticmethod
def log_replica_batch_map(name, query_map):
LOG.info('%s : Size: %s; Replicas: |%s|' %
(name, len(query_map), '|'.join([
'%s: %s' % (
','.join([h.address for h in hosts]),
','.join([str(counter.value()) for (batch, counter) in queue]))
for hosts, queue in query_map.items()])))
def get_all_batches(self):
self.log_token_batch_map("metric batches", self.metric_queries)
self.log_token_batch_map("dimension batches", self.dimension_queries)
self.log_token_batch_map("dimension metric batches", self.dimension_metric_queries)
self.log_token_batch_map("metric dimension batches", self.metric_dimension_queries)
self.log_replica_batch_map("measurement batches", self.measurement_queries)
result_list = []
for q in self.measurement_queries.values():
result_list.extend(q)
for q in self.metric_queries.values():
result_list.extend(q)
for q in self.dimension_queries.values():
result_list.extend(q)
for q in self.dimension_metric_queries.values():
result_list.extend(q)
for q in self.metric_dimension_queries.values():
result_list.extend(q)
return result_list
class Counter(object):
def __init__(self, init_value=0):
self._count = init_value
def increment(self):
self._count += 1
def increment_by(self, increment):
self._count += increment
def value(self):
return self._count