`Home `_ OpenStack-Ansible Developer Documentation
Quick Start
===========
All-in-one (AIO) builds are a great way to perform an OpenStack-Ansible build
for:
* a development environment
* an overview of how all of the OpenStack services fit together
* a simple lab deployment
Although AIO builds aren't recommended for large production deployments,
they're great for smaller proof-of-concept deployments.
Absolute minimum server resources (currently used for gate checks):
* 8 vCPU's
* 50GB free disk space on the root partition
* 8GB RAM
Recommended server resources:
* CPU/motherboard that supports `hardware-assisted virtualization`_
* 8 CPU Cores
* 80GB free disk space on the root partition, or 60GB+ on a blank
secondary disk. Using a secondary disk requires the use of the
``bootstrap_host_data_disk_device`` parameter. Please see
`Building an AIO`_ for more details.
* 16GB RAM
It's `possible` to perform AIO builds within a virtual machine for
demonstration and evaluation, but your virtual machines will perform poorly.
For production workloads, multiple nodes for specific roles are recommended.
.. _hardware-assisted virtualization: https://en.wikipedia.org/wiki/Hardware-assisted_virtualization
Building an AIO
---------------
There are three steps to running an AIO build, with an optional first step
should you need to customize your build:
* Configuration *(this step is optional)*
* Install and bootstrap Ansible
* Initial host bootstrap
* Run playbooks
When building an AIO on a new server, it is recommended that all
system packages are upgraded and then reboot into the new kernel:
.. code-block:: shell-session
# apt-get dist-upgrade
# reboot
Start by cloning the OpenStack-Ansible repository and changing into the
repository root directory:
.. code-block:: shell-session
# git clone https://github.com/openstack/openstack-ansible \
/opt/openstack-ansible
# cd /opt/openstack-ansible
Next switch the applicable branch/tag to be deployed from. Note that
deploying from the head of a branch may result in an unstable build due to
changes in flight and upstream OpenStack changes. For a test (ie not a
development) build it is usually best to checkout the latest tagged version.
.. code-block:: shell-session
# # List all existing tags.
# git tag -l
# # Checkout the stable branch and find just the latest tag
# git checkout stable/mitaka
# git describe --abbrev=0 --tags
# # Checkout the latest tag from either method of retrieving the tag.
# git checkout |my_conf_val|
By default the scripts deploy all OpenStack services with sensible defaults
for the purpose of a gate check, development or testing system.
Review the `bootstrap-host role defaults`_ file to see
various configuration options. Deployers have the option to change how the
host is bootstrapped. This is useful when you wish the AIO to make use of
a secondary data disk, or when using this role to bootstrap a multi-node
development environment.
.. _bootstrap-host role defaults: https://github.com/openstack/openstack-ansible/blob/master/tests/roles/bootstrap-host/defaults/main.yml
The bootstrap script is pre-set to pass the environment variable
``BOOTSTRAP_OPTS`` as an additional option to the bootstrap process. For
example, if you wish to set the bootstrap to re-partition a specific
secondary storage device (/dev/sdb), which will erase all of the data on the
device, then execute:
.. code-block:: shell-session
# export BOOTSTRAP_OPTS="bootstrap_host_data_disk_device=sdb"
Additional options may be implemented by simply concatenating them with
a space between each set of options, for example:
.. code-block:: shell-session
# export BOOTSTRAP_OPTS="bootstrap_host_data_disk_device=sdb"
# export BOOTSTRAP_OPTS="${BOOTSTRAP_OPTS} bootstrap_host_ubuntu_repo=http://mymirror.example.com/ubuntu"
You may wish to change the role fetch mode. Options are "galaxy" and
"git-clone". The default for this option is "galaxy".
options:
:galaxy: Resolve all role dependencies using the ``ansible-galaxy`` resolver
:git-clone: Clone all of the role dependencies using native git
Notes:
When doing role development it may be useful to set
``ANSIBLE_ROLE_FETCH_MODE`` to *git-clone*. This will provide you the
ability to develop roles within the environment by modifying, patching, or
committing changes using an intact git tree while the *galaxy* option scrubs
the ``.git`` directory when it resolves a dependency.
.. code-block:: bash
$ export ANSIBLE_ROLE_FETCH_MODE=git-clone
The next step is to bootstrap Ansible and the Ansible roles for the
development environment. Deployers can customize roles by adding variables to
override the defaults in each role (see :ref:`adding-galaxy-roles`). Run the
following to bootstrap Ansible:
.. code-block:: shell-session
# scripts/bootstrap-ansible.sh
In order for all the services to run, the host must be prepared with the
appropriate disks, packages, network configuration and a base configuration
for the OpenStack Deployment. This preparation is completed by executing:
.. code-block:: shell-session
# scripts/bootstrap-aio.sh
If you wish to add any additional configuration entries for the OpenStack
configuration then this can be done now by editing
``/etc/openstack_deploy/user_variables.yml``. Please see the `Install Guide`_
for more details.
Finally, run the playbooks by executing:
.. code-block:: shell-session
# scripts/run-playbooks.sh
.. note::
Do not execute the ``run-playbooks.sh`` more than once. If something goes
wrong, it is necessary to start over as described below in the
`Rebuilding an AIO`_ section. Alternatively, it may be possible to
individually run each playbook rather than starting over. If any playbooks
need to be re-run after the initial deploy, they should be run from the
playbooks directory with the openstack-ansible command. Executing
``run-playbooks.sh`` a second time results in an inconsistent state for LXC
IPtables rules and causes network connectivity issues from within containers.
The installation process will take a while to complete, but here are some
general estimates:
* Bare metal systems with SSD storage: ~ 30-50 minutes
* Virtual machines with SSD storage: ~ 45-60 minutes
* Systems with traditional hard disks: ~ 90-120 minutes
Once the playbooks have fully executed, it is possible to experiment with
various settings changes in ``/etc/openstack_deploy/user_variables.yml`` and
only run individual playbooks. For example, to run the playbook for the
Keystone service, execute:
.. code-block:: shell-session
# cd /opt/openstack-ansible/playbooks
# openstack-ansible os-keystone-install.yml
**Note:** The AIO bootstrap playbook will still build containers for services
that are not requested for deployment, but the service will not be deployed
in that container.
.. _Install Guide: ../install-guide/
Rebooting an AIO
----------------
As the AIO includes all three cluster members of MariaDB/Galera, the cluster
has to be re-initialized after the host is rebooted.
This is done by executing the following:
.. code-block:: shell-session
# cd /opt/openstack-ansible/playbooks
# openstack-ansible -e galera_ignore_cluster_state=true galera-install.yml
If this fails to get the database cluster back into a running state, then
please make use of the `Galera Cluster Recovery`_ page in the Install Guide.
.. _Galera Cluster Recovery: ../install-guide/ops-galera-recovery.html
Rebuilding an AIO
-----------------
Sometimes it may be useful to destroy all the containers and rebuild the AIO.
While it is preferred that the AIO is entirely destroyed and rebuilt, this
isn't always practical. As such the following may be executed instead:
.. code-block:: shell-session
# # Move to the playbooks directory.
# cd /opt/openstack-ansible/playbooks
# # Destroy all of the running containers.
# openstack-ansible lxc-containers-destroy.yml
# # On the host stop all of the services that run locally and not
# # within a container.
# for i in \
$(ls /etc/init \
| grep -e "nova\|swift\|neutron\|cinder" \
| awk -F'.' '{print $1}'); do \
service $i stop; \
done
# # Uninstall the core services that were installed.
# for i in $(pip freeze | grep -e "nova\|neutron\|keystone\|swift\|cinder"); do \
pip uninstall -y $i; done
# # Remove crusty directories.
# rm -rf /openstack /etc/{neutron,nova,swift,cinder} \
/var/log/{neutron,nova,swift,cinder}
# # Remove the pip configuration files on the host
# rm -rf /root/.pip
# # Remove the apt package manager proxy
# rm /etc/apt/apt.conf.d/00apt-cacher-proxy
Should an existing AIO environment need to be reinstalled, the most efficient
method is to destroy the host operating system and start over. For this reason,
AIOs are best run inside of some form of virtual machine or cloud guest.
Quick AIO build on Rackspace Cloud
----------------------------------
You can automate the AIO build process with a virtual machine from the
Rackspace Cloud.
First, we will need a cloud-config file that will allow us to run the build as
soon as the instance starts. Save this file as ``user_data.yml``:
.. code-block:: yaml
#cloud-config
apt_mirror: http://mirror.rackspace.com/ubuntu/
package_upgrade: true
packages:
- git-core
runcmd:
- export ANSIBLE_FORCE_COLOR=true
- export PYTHONUNBUFFERED=1
- export REPO=https://github.com/openstack/openstack-ansible
- export BRANCH=stable/mitaka
- git clone -b ${BRANCH} ${REPO} /opt/openstack-ansible
- cd /opt/openstack-ansible && scripts/bootstrap-ansible.sh
- cd /opt/openstack-ansible && scripts/bootstrap-aio.sh
- cd /opt/openstack-ansible && scripts/run-playbooks.sh
output: { all: '| tee -a /var/log/cloud-init-output.log' }
Feel free to customize the YAML file to meet any requirements.
We can pass this YAML file to nova and build a Cloud Server at Rackspace:
.. code-block:: bash
nova boot \
--flavor general1-8 \
--image 09de0a66-3156-48b4-90a5-1cf25a905207 \
--key-name=public_key_name \
--config-drive=true \
--user-data user_data.yml
--poll
openstack-ansible-aio-build
Be sure to replace ``public_key_name`` with the name of the public key that
to use with this instance. Within a minute or so, the instance should be
running and the OpenStack-Ansible installation will be in progress.
To follow along with the progress, ssh to the running instance and execute:
.. code-block:: bash
tail -F /var/log/cloud-init-output.log
Reference Diagram for an AIO Build
----------------------------------
Here is a basic diagram that attempts to illustrate what the resulting AIO
deployment looks like.
This diagram is not to scale and is not even 100% accurate, this diagram was
built for informational purposes only and should **ONLY** be used as such.
.. code-block:: text
------->[ ETH0 == Public Network ]
|
V [ * ] Socket Connections
[ HOST MACHINE ] [ <>v^ ] Network Connections
* ^ *
| | |-------------------------------------------------------
| | |
| |---------------->[ HAProxy ] |
| ^ |
| | |
| V |
| (BR-Interfaces)<------- |
| ^ * | |
*-[ LXC ]*--*----------------------|-----|------|----| |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | V * | |
| * | | [ Galera x3 ] |
| [ Memcached ]<------------| | | |
*-------*[ Rsyslog ]<--------------|--| | * |
| [ Repos Server x3 ]<------| ---|-->[ RabbitMQ x3 ] |
| [ Horizon x2 ]<-----------| | | |
| [ Nova api ec2 ]<---------|--| | |
| [ Nova api os ]<----------|->| | |
| [ Nova console ]<---------| | | |
| [ Nova Cert ]<------------|->| | |
| [ Ceilometer api ]<-------|->| | |
| [ Ceilometer collector ]<-|->| | |
| [ Cinder api ]<-----------|->| | |
| [ Glance api ]<-----------|->| | |
| [ Heat apis ]<------------|->| | [ Loop back devices ]*-*
| [ Heat engine ]<----------|->| | \ \ |
| ------>[ Nova api metadata ] | | | { LVM } { XFS x3 } |
| | [ Nova conductor ]<-------| | | * * |
| |----->[ Nova scheduler ]--------|->| | | | |
| | [ Keystone x3 ]<----------|->| | | | |
| | |--->[ Neutron agents ]*-------|--|---------------------------*
| | | [ Neutron server ]<-------|->| | | |
| | | |->[ Swift proxy ]<----------- | | | |
*-|-|-|-*[ Cinder volume ]*----------------------* | |
| | | | | | |
| | | ----------------------------------------- | |
| | ----------------------------------------- | | |
| | -------------------------| | | | |
| | | | | | |
| | V | | * |
---->[ Compute ]*[ Neutron linuxbridge ]<---| |->[ Swift storage ]-
--------------
.. include:: navigation.txt