Samuel Merritt bcf26f5209 Add notion of overload to swift-ring-builder
The ring builder's placement algorithm has two goals: first, to ensure
that each partition has its replicas as far apart as possible, and
second, to ensure that partitions are fairly distributed according to
device weight. In many cases, it succeeds in both, but sometimes those
goals conflict. When that happens, operators may want to relax the
rules a little bit in order to reach a compromise solution.

Imagine a cluster of 3 nodes (A, B, C), each with 20 identical disks,
and using 3 replicas. The ring builder will place 1 replica of each
partition on each node, as you'd expect.

Now imagine that one disk fails in node C and is removed from the
ring. The operator would probably be okay with remaining at 1 replica
per node (unless their disks are really close to full), but to
accomplish that, they have to multiply the weights of the other disks
in node C by 20/19 to make C's total weight stay the same. Otherwise,
the ring builder will move partitions around such that some partitions
have replicas only on nodes A and B.

If 14 more disks failed in node C, the operator would probably be okay
with some data not living on C, as a 4x increase in storage
requirements is likely to fill disks.

This commit introduces the notion of "overload": how much extra
partition space can be placed on each disk *over* what the weight
dictates.

For example, an overload of 0.1 means that a device can take up to 10%
more partitions than its weight would imply in order to make the
replica dispersion better.

Overload only has an effect when replica-dispersion and device weights
come into conflict.

The overload is a single floating-point value for the builder
file. Existing builders get an overload of 0.0, so there will be no
behavior change on existing rings.

In the example above, imagine the operator sets an overload of 0.112
on his rings. If node C loses a drive, each other drive can take on up
to 11.2% more data. Splitting the dead drive's partitions among the
remaining 19 results in a 5.26% increase, so everything that was on
node C stays on node C. If another disk dies, then we're up to an
11.1% increase, and so everything still stays on node C. If a third
disk dies, then we've reached the limits of the overload, so some
partitions will begin to reside solely on nodes A and B.

DocImpact

Change-Id: I3593a1defcd63b6ed8eae9c1c66b9d3428b33864
2015-01-07 14:16:08 -08:00
2013-09-17 11:46:04 +10:00
2014-11-19 09:11:55 -05:00
2014-05-21 09:37:22 -07:00
2014-09-25 11:04:31 -07:00

Swift

A distributed object storage system designed to scale from a single machine to thousands of servers. Swift is optimized for multi-tenancy and high concurrency. Swift is ideal for backups, web and mobile content, and any other unstructured data that can grow without bound.

Swift provides a simple, REST-based API fully documented at http://docs.openstack.org/.

Swift was originally developed as the basis for Rackspace's Cloud Files and was open-sourced in 2010 as part of the OpenStack project. It has since grown to include contributions from many companies and has spawned a thriving ecosystem of 3rd party tools. Swift's contributors are listed in the AUTHORS file.

Docs

To build documentation install sphinx (pip install sphinx), run python setup.py build_sphinx, and then browse to /doc/build/html/index.html. These docs are auto-generated after every commit and available online at http://docs.openstack.org/developer/swift/.

For Developers

The best place to get started is the "SAIO - Swift All In One". This document will walk you through setting up a development cluster of Swift in a VM. The SAIO environment is ideal for running small-scale tests against swift and trying out new features and bug fixes.

You can run unit tests with .unittests and functional tests with .functests.

If you would like to start contributing, check out these notes to help you get started.

Code Organization

  • bin/: Executable scripts that are the processes run by the deployer
  • doc/: Documentation
  • etc/: Sample config files
  • swift/: Core code
    • account/: account server
    • common/: code shared by different modules
      • middleware/: "standard", officially-supported middleware
      • ring/: code implementing Swift's ring
    • container/: container server
    • obj/: object server
    • proxy/: proxy server
  • test/: Unit and functional tests

Data Flow

Swift is a WSGI application and uses eventlet's WSGI server. After the processes are running, the entry point for new requests is the Application class in swift/proxy/server.py. From there, a controller is chosen, and the request is processed. The proxy may choose to forward the request to a back- end server. For example, the entry point for requests to the object server is the ObjectController class in swift/obj/server.py.

For Deployers

Deployer docs are also available at http://docs.openstack.org/developer/swift/. A good starting point is at http://docs.openstack.org/developer/swift/deployment_guide.html

You can run functional tests against a swift cluster with .functests. These functional tests require /etc/swift/test.conf to run. A sample config file can be found in this source tree in test/sample.conf.

For Client Apps

For client applications, official Python language bindings are provided at http://github.com/openstack/python-swiftclient.

Complete API documentation at http://docs.openstack.org/api/openstack-object-storage/1.0/content/


For more information come hang out in #openstack-swift on freenode.

Thanks,

The Swift Development Team

Description
OpenStack Storage (Swift)
Readme 189 MiB
Languages
Python 99.6%
JavaScript 0.3%