decbcd24d4
This commit makes it possible to PUT an object into Swift and have it stored using erasure coding instead of replication, and also to GET the object back from Swift at a later time. This works by splitting the incoming object into a number of segments, erasure-coding each segment in turn to get fragments, then concatenating the fragments into fragment archives. Segments are 1 MiB in size, except the last, which is between 1 B and 1 MiB. +====================================================================+ | object data | +====================================================================+ | +------------------------+----------------------+ | | | v v v +===================+ +===================+ +==============+ | segment 1 | | segment 2 | ... | segment N | +===================+ +===================+ +==============+ | | | | v v /=========\ /=========\ | pyeclib | | pyeclib | ... \=========/ \=========/ | | | | +--> fragment A-1 +--> fragment A-2 | | | | | | | | | | +--> fragment B-1 +--> fragment B-2 | | | | ... ... Then, object server A gets the concatenation of fragment A-1, A-2, ..., A-N, so its .data file looks like this (called a "fragment archive"): +=====================================================================+ | fragment A-1 | fragment A-2 | ... | fragment A-N | +=====================================================================+ Since this means that the object server never sees the object data as the client sent it, we have to do a few things to ensure data integrity. First, the proxy has to check the Etag if the client provided it; the object server can't do it since the object server doesn't see the raw data. Second, if the client does not provide an Etag, the proxy computes it and uses the MIME-PUT mechanism to provide it to the object servers after the object body. Otherwise, the object would not have an Etag at all. Third, the proxy computes the MD5 of each fragment archive and sends it to the object server using the MIME-PUT mechanism. With replicated objects, the proxy checks that the Etags from all the object servers match, and if they don't, returns a 500 to the client. This mitigates the risk of data corruption in one of the proxy --> object connections, and signals to the client when it happens. With EC objects, we can't use that same mechanism, so we must send the checksum with each fragment archive to get comparable protection. On the GET path, the inverse happens: the proxy connects to a bunch of object servers (M of them, for an M+K scheme), reads one fragment at a time from each fragment archive, decodes those fragments into a segment, and serves the segment to the client. When an object server dies partway through a GET response, any partially-fetched fragment is discarded, the resumption point is wound back to the nearest fragment boundary, and the GET is retried with the next object server. GET requests for a single byterange work; GET requests for multiple byteranges do not. There are a number of things _not_ included in this commit. Some of them are listed here: * multi-range GET * deferred cleanup of old .data files * durability (daemon to reconstruct missing archives) Co-Authored-By: Alistair Coles <alistair.coles@hp.com> Co-Authored-By: Thiago da Silva <thiago@redhat.com> Co-Authored-By: John Dickinson <me@not.mn> Co-Authored-By: Clay Gerrard <clay.gerrard@gmail.com> Co-Authored-By: Tushar Gohad <tushar.gohad@intel.com> Co-Authored-By: Paul Luse <paul.e.luse@intel.com> Co-Authored-By: Christian Schwede <christian.schwede@enovance.com> Co-Authored-By: Yuan Zhou <yuan.zhou@intel.com> Change-Id: I9c13c03616489f8eab7dcd7c5f21237ed4cb6fd2 |
||
---|---|---|
bin | ||
doc | ||
etc | ||
examples | ||
swift | ||
test | ||
.coveragerc | ||
.functests | ||
.gitignore | ||
.gitreview | ||
.mailmap | ||
.probetests | ||
.unittests | ||
AUTHORS | ||
babel.cfg | ||
CHANGELOG | ||
CONTRIBUTING.md | ||
LICENSE | ||
MANIFEST.in | ||
README.md | ||
requirements.txt | ||
setup.cfg | ||
setup.py | ||
test-requirements.txt | ||
tox.ini |
Swift
A distributed object storage system designed to scale from a single machine to thousands of servers. Swift is optimized for multi-tenancy and high concurrency. Swift is ideal for backups, web and mobile content, and any other unstructured data that can grow without bound.
Swift provides a simple, REST-based API fully documented at http://docs.openstack.org/.
Swift was originally developed as the basis for Rackspace's Cloud Files and was open-sourced in 2010 as part of the OpenStack project. It has since grown to include contributions from many companies and has spawned a thriving ecosystem of 3rd party tools. Swift's contributors are listed in the AUTHORS file.
Docs
To build documentation install sphinx (pip install sphinx
), run
python setup.py build_sphinx
, and then browse to /doc/build/html/index.html.
These docs are auto-generated after every commit and available online at
http://docs.openstack.org/developer/swift/.
For Developers
The best place to get started is the "SAIO - Swift All In One". This document will walk you through setting up a development cluster of Swift in a VM. The SAIO environment is ideal for running small-scale tests against swift and trying out new features and bug fixes.
You can run unit tests with .unittests
and functional tests with
.functests
.
If you would like to start contributing, check out these notes to help you get started.
Code Organization
- bin/: Executable scripts that are the processes run by the deployer
- doc/: Documentation
- etc/: Sample config files
- swift/: Core code
- account/: account server
- common/: code shared by different modules
- middleware/: "standard", officially-supported middleware
- ring/: code implementing Swift's ring
- container/: container server
- obj/: object server
- proxy/: proxy server
- test/: Unit and functional tests
Data Flow
Swift is a WSGI application and uses eventlet's WSGI server. After the
processes are running, the entry point for new requests is the Application
class in swift/proxy/server.py
. From there, a controller is chosen, and the
request is processed. The proxy may choose to forward the request to a back-
end server. For example, the entry point for requests to the object server is
the ObjectController
class in swift/obj/server.py
.
For Deployers
Deployer docs are also available at http://docs.openstack.org/developer/swift/. A good starting point is at http://docs.openstack.org/developer/swift/deployment_guide.html
You can run functional tests against a swift cluster with .functests
. These
functional tests require /etc/swift/test.conf
to run. A sample config file
can be found in this source tree in test/sample.conf
.
For Client Apps
For client applications, official Python language bindings are provided at http://github.com/openstack/python-swiftclient.
Complete API documentation at http://docs.openstack.org/api/openstack-object-storage/1.0/content/
For more information come hang out in #openstack-swift on freenode.
Thanks,
The Swift Development Team