A log management component for OpenStack
Go to file
zhangbailin 8e230ada9e Hello Venus
Submitted by Donny Zhang.

Change-Id: Icf28edf30bf9498888478252575b0806c44246c9
2020-11-25 01:11:18 +00:00
api-ref/source Initialize the Venus project 2020-11-11 08:19:55 +00:00
doc Initialize the Venus project 2020-11-11 08:19:55 +00:00
etc/venus Initialize the Venus project 2020-11-11 08:19:55 +00:00
releasenotes Initialize the Venus project 2020-11-11 08:19:55 +00:00
tools/config Initialize the Venus project 2020-11-11 08:19:55 +00:00
venus Add pep8 job for venus 2020-11-11 09:03:11 +00:00
.gitignore Initialize the Venus project 2020-11-11 08:19:55 +00:00
.gitreview Added .gitreview 2020-11-10 02:23:44 +00:00
.zuul.yaml Add pep8 job for venus 2020-11-11 09:03:11 +00:00
babel.cfg Initialize the Venus project 2020-11-11 08:19:55 +00:00
CONTRIBUTING.rst Initialize the Venus project 2020-11-11 08:19:55 +00:00
HACKING.rst Initialize the Venus project 2020-11-11 08:19:55 +00:00
LICENSE Initialize the Venus project 2020-11-11 08:19:55 +00:00
MANIFEST.in Initialize the Venus project 2020-11-11 08:19:55 +00:00
README.bak.rst Rename readme file 2020-11-20 07:38:37 +00:00
README.rst Hello Venus 2020-11-25 01:11:18 +00:00
requirements.txt Initialize the Venus project 2020-11-11 08:19:55 +00:00
setup.cfg Initialize the Venus project 2020-11-11 08:19:55 +00:00
setup.py Initialize the Venus project 2020-11-11 08:19:55 +00:00
test-requirements.txt Initialize the Venus project 2020-11-11 08:19:55 +00:00
tox.ini Initialize the Venus project 2020-11-11 08:19:55 +00:00

Hello Venus

An OpenStack Log Management Service.

About Venus

In light of the problems and needs of retrieval, storage and analysis etc. of logs on the OpenStack platform, we developed the OpenStack log management module Venus.

This project can provide a one-stop solution to log collection, cleaning, indexing, analysis, alarm, visualization, report generation and other needs, which involves helping operator or maintainer to quickly solve retrieve problems, grasp the operational health of the platform, and improve the level of platform management.

Additionally, this project plans to use machine learning algorithms to quickly locate IT failures and root causes, and improve operation and maintenance efficiency.