
Titanium Server 
Resource Scaling 

 
Host-Guest Message-Based API 

& 
Guest Reference Implementation 

 

Release:  15.12 

01/14/2016 

 

 

 

WIND RIVER 
 

 
 

 

[Specification of the Host-Guest Resource Scaling APIs – 16.01.] 



 

              

Wind River, 500 Wind River Way, Alameda, CA. U.S.A., 94501 tel: 800-545-WIND fax: 510.749.2010 www.windriver.com                   - 1 -    

 

 
 

 

Copyright Notice 
 
 

Copyright (c) 2013-2016, Wind River Systems, Inc.  
 
Redistribution and use in source and binary forms, with or without modification, are  
permitted provided that the following conditions are met:  
 
1) Redistributions of source code must retain the above copyright notice,  
this list of conditions and the following disclaimer.  
 
2) Redistributions in binary form must reproduce the above copyright notice,  
this list of conditions and the following disclaimer in the documentation and/or  
other materials provided with the distribution.  
 
3) Neither the name of Wind River Systems nor the names of its contributors may be  
used to endorse or promote products derived from this software without specific  
prior written permission.  
 
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"  
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE  
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE  
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE  
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL  
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR  
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER  
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,  
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE  
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 



 

              

Wind River, 500 Wind River Way, Alameda, CA. U.S.A., 94501 tel: 800-545-WIND fax: 510.749.2010 www.windriver.com                   - 2 -    

 

Table of Contents 
 

Introduction ..................................................................................................................................... 3 
Host – Guest Resource Scaling API ............................................................................................... 4 

Message Types and Semantics.................................................................................................... 5 
Virtio Serial Device .................................................................................................................... 7 

JSON Message Syntax ................................................................................................................ 9 
Base JSON Message Layer – Syntax .................................................................................... 10 
Application JSON Message Layer – Syntax ......................................................................... 11 

Examples ............................................................................................................................... 13 
Reference Implementation of Guest Resource Scaling ................................................................ 15 



 

              

Wind River, 500 Wind River Way, Alameda, CA. U.S.A., 94501 tel: 800-545-WIND fax: 510.749.2010 www.windriver.com                   - 3 -    

 

Introduction 
 

Titanium Server implements a Host-to-Guest Resource Scaling Messaging-based API to co-

ordinate resource scaling operations between the Titanium Server Host Platform and the Guest 

VM.  Currently scaling the number of online vCPUs within the Guest is supported.  This 

document contains the specification for this messaging-based API. 

 

Also included in this document is an overview of the Titanium Server Guest Resource Scaling 

SDK Module which provides a Linux-based reference implementation of the Guest-side software 

for implementing this Messaging-based API in the Guest and implementing the appropriate 

management of the scaled resources in the Guest.  I.e. in the case of resource scaling of CPUs, 

this involves the appropriate on-lining and off-lining of CPUs inside the Guest VM.  The SDK 

Module provides source code and make/build instructions which can be used strictly as reference 

or built and included ‘as is’ in your Guest image.  Full build, install and usage instructions can be 

found in the README files included in the SDK Module.  This document simply provides an 

overview of the reference implementation. 

 

 

 

 

 

 

 

 

 



 

              

Wind River, 500 Wind River Way, Alameda, CA. U.S.A., 94501 tel: 800-545-WIND fax: 510.749.2010 www.windriver.com                   - 4 -    

Host – Guest Resource Scaling API 
 

Titanium Server implements a simple Host-to-Guest Resource Scaling API to co-ordinate 

resource scaling operations between the Titanium Server Host Platform and the Guest VM.  

Currently scaling the number of online vCPUs within the Guest is supported. 

 

The Host-to-Guest Resource Scaling API is a message-based API using a JSON-formatted 

application messaging layer on top of a ‘virtio serial device’ between QEMU on the host and the 

Guest VM.  JSON formatting provides a simple, humanly readable messaging format which can 

be easily parsed and formatted using any high level programming language being used in the 

Guest VM (e.g. C, Python, Java, etc.).  Use of the ‘virtio serial device’ provides a simple, direct 

communication channel between host and guest which is independent of the Guest’s L2/L3 

networking.  

 

 
Figure 1 – Titanium Server Host-Guest Resource Scaling API 

 

 

 



 

              

Wind River, 500 Wind River Way, Alameda, CA. U.S.A., 94501 tel: 800-545-WIND fax: 510.749.2010 www.windriver.com                   - 5 -    

Message Types and Semantics 
 

For the Resource Scaling API, there are only three  message types; a Resource Scaling Request 

from the Host to the Guest, a Resource Scaling Response from the Guest to the Host and a Nack 

Message. 

 

 Resource Scaling Request  (Host  Guest) 

 

o This is the Resource Scaling Request sent from Titanium Server to the Guest VM. 

 

It specifies the resource to be scaled (currently CPU scaling, but memory and 

other resources may be added in the future) and the direction of scaling (i.e. up or 

down).  In the case of scaling CPU up, the specific CPU number to be on-lined 

and the expected resulting full list of on-lined CPUs (after the scale up completes) 

is specified as well. 

 

o On receiving a CPU Scale Up request, the Guest is expected to: 

 on-line the specified CPU, using the mechanisms appropriate to the 

Guest’s OS,  

 for example, on Linux, using the /sys/devices/system/cpu virtual 

filesystem to read and modify the online status of individual cores 

of the cpu device(s). 

 respond to the request with the ‘Resource Scaling Response’ as described 

below. 

 

o On receiving a CPU Scale Down request, the Guest is expected to: 

 off-line the specified CPU, using the mechanisms appropriate to the 

Guest’s OS,  

 respond to the request with the ‘Resource Scaling Response’ as described 

below. 

 

 

 Resource Scaling Response  (Guest  Host) 

 

o This is the Resource Scaling Response sent from the Guest VM to the Titanium 

Server in response to the Resource Scaling Request. 

 

It echoes back the resource being scaled and the direction of scaling.  It also 

specifies the result of the Guest Scaling Operation (i.e. success or fail), and for the 

fail scenario also specifies the details of the error which occurred. 

 

In addition, for a successful scale up, the CPU number on-lined is echoed back as 



 

              

Wind River, 500 Wind River Way, Alameda, CA. U.S.A., 94501 tel: 800-545-WIND fax: 510.749.2010 www.windriver.com                   - 6 -    

well as the resulting list of online CPUs.  And similarly for a successful scale 

down, the off-lined CPU number is returned, and the resulting list of online CPUs. 

 

 

 Nack       (Host  Guest) 

 

o This is a message sent from the Host to the Guest when the Host receives a 

message with incorrect syntax, 

o It contains the message type of the original (incorrect) message and a log_msg 

describing the error, 

o This allows the Guest Application developer to debug issues when developing the 

Guest-side API code. 

 



 

              

Wind River, 500 Wind River Way, Alameda, CA. U.S.A., 94501 tel: 800-545-WIND fax: 510.749.2010 www.windriver.com                   - 7 -    

Virtio Serial Device 
 

The transport layer of the Host-Guest Resource Scaling API is a ‘virtio serial device’ (also 

known as a ‘vmchannel’) between QEMU (on the host) and the Guest VM.  Device emulation in 

QEMU presents a virtio-pci device to the Guest, and a Guest Driver presents a char device 

interface to Guest userspace applications.  This provides a simple transport mechanism for 

communication between the host userspace and the guest userspace.  I.e. it is completely 

independent of the networking stack of the Guest, and is available very early in the boot 

sequence of the Guest. 

 

This is a standard Linux QEMU/KVM feature.  The Guest API for interfacing with the ‘virtio 

serial device’ can be found at http://www.linux-kvm.org/page/Virtio-serial_API .  Examples of 

Guest code for opening, reading, writing, etc. from/to a ‘virtio serial device’ can also be found in 

the source code of the Titanium Server Guest Resource Scaling SDK Module.  This SDK 

Module provides a Linux-based reference implementation of the Guest-side software for 

implementing the Guest Resource Scaling Messaging API and implementing the requested 

scaling of Guest Resources.  Generally communicating with a ‘virtio serial device’ is very 

similar to communicating via a pipe, or a SOCK_STREAM socket. 

 

There are however a few additional considerations to be aware of when using ‘virtio serial 

devices’: 

 only one process at a time can open the device in the Guest, 

 read() returns 0, if the Host is not connected to the device, 

 write() blocks or returns -1 with error set to EAGAIN, if the Host is not connected, 

 poll() will always set POLLHUP in revents when the Host connection is down.   

o This means that the only way to get event-driven notification of connection is to 

register for SIGIO.  However, then a SIGIO event will occur every time the 

device becomes readable. The work-around is to selectively block SIGIO as long 

as the link is up is thought to be up, then unblock it on connection loss so a 

notification occurs when the link comes back. 

 If the Host disconnects the Guest should still process any buffered messages from the 

device, 

 Message boundaries are not preserved, the Guest needs to handle message fragment 

reassembly.  Multiple messages can be returned in one read() call, as well as buffers 

beginning and ending with partial messages. This is hard to get perfect; one can study the 

host_guest_msg.c code in the Titanium Server Guest Resource Scaling SDK 

Module for ideas on how this can be handled. 

 

http://www.linux-kvm.org/page/Virtio-serial_API


 

              

Wind River, 500 Wind River Way, Alameda, CA. U.S.A., 94501 tel: 800-545-WIND fax: 510.749.2010 www.windriver.com                   - 8 -    

The QEMU/KVM created by Titanium Server in order to host a Guest VM is created with a 

‘virtio serial device’ named: 

 
  /dev/virtio-port/cgcs.messaging  

 

for general Titanium Server Host – to – Guest VM messaging (e.g. Host-Guest Resource Scaling 

Messaging as well as other Host-Guest Messaging discussed in other Titanium Server – Guest 

API documents). 



 

              

Wind River, 500 Wind River Way, Alameda, CA. U.S.A., 94501 tel: 800-545-WIND fax: 510.749.2010 www.windriver.com                   - 9 -    

JSON Message Syntax 
 

The upper layer messaging format being used is ‘Line Delimited JSON Format’.  I.e. a ‘\n’ 

character is used to identify message boundaries in the stream of data to/from the virtio serial 

device; specifically a ‘\n’ character is inserted at the start and end of the JSON Object 

representing a Message. 

 
\n{key:value,key:value,…}\n 

 

Note that key and values must NOT contain ‘\n’ characters. 

 

The upper layer messaging format is actually structured as a hierarchical JSON format 

containing a Base JSON Message Layer and an Application JSON Message Layer: 

 the Base Layer provides the ability to multiplex different groups of message types on top 

of a single ‘virtio serial device’  

e.g. 

o resource scaling,  

o server group messaging,  

o etc. 

and 

 the Application Layer provides the specific message types and fields of a particular group 

of message types. 

 

 



 

              

Wind River, 500 Wind River Way, Alameda, CA. U.S.A., 94501 tel: 800-545-WIND fax: 510.749.2010 www.windriver.com                   - 10 

-    

Base JSON Message Layer – Syntax 

 

Again, the Base Layer provides the ability to multiplex different groups of message types on top 

of a single ‘virtio serial device’, e.g. resource scaling versus server group messaging etc. 

 

 

Host – to – Guest Messages 

 
Key  Value Optionality* Example value   (for Resource Scaling) Description 

“version” integer M 1 Version of the Base Layer 

Messaging 

“source_addr” string M  Opaque string representing 

the host-side address of the 

message. 

“dest_addr” string M “cgcs.scale” The Guest-side addressing of 

the message; specifically the 

Message Group Type 

“data” JSON 

Formatted 

String 

M See the following section on Application 

Layer JSON Message Layer – Syntax 

for Resource Scaling. 

Application layer JSON 

message whose schema is 

dependent on the particular 

Message Group Type 

 M: Mandatory; O: Optional 

 

 

 

Guest  – to – Host  Messages 

 

Guest – to – Host Messages, from a Base Layer perspective, are identical to Host – to – Guest 

Messages except for swapped semantics of source_addr and dest_addr. 



 

              

Wind River, 500 Wind River Way, Alameda, CA. U.S.A., 94501 tel: 800-545-WIND fax: 510.749.2010 www.windriver.com                   - 11 

-    

Application JSON Message Layer – Syntax 

 

Again the Application Layer provides the specific message types and fields of a particular group 

of message types; in this case the messages of Resource Scaling. 

 

 

Host – to – Guest Messages 

 

Resource Scaling Request 

 
Key Value Optionality* Example value Description 

“version” integer M 1 Version of the Application Layer 

Messaging 

“msg_type” string 

“scale_request” 

M “scale_request” Type of message 

“timeout_ms” integer M 500 Timeout in milli-seconds to be 

used for the internal Guest 

operation to scale the resource. 

“resource” string “cpu” M “cpu” The resource to scale. CPU 

scaling is currently supported. 

“direction” string “up” or 

“down” 

M “up” Direction of scaling 

“online_cpu” integer M(direction=up) 

 

4 vCPU number to online when 

scaling up. 

“online_cpus” array of integers M(direction=up) [0,1,2,3,4] The expected array of current 

online cpus after the command 

completes, if successful. 

 M: Mandatory; O: Optional; (Condition) 

 

 

 

Nack 

 
Key Value Optionality* Example value Description 

“version” integer M 1 Version of the interface 

“msg_type” string M “scale_response_nack” Type of message 

“log_msg” string M “failed to parse 

version” 

Error message 

 M: Mandatory; O: Optional; (Condition) 

 



 

              

Wind River, 500 Wind River Way, Alameda, CA. U.S.A., 94501 tel: 800-545-WIND fax: 510.749.2010 www.windriver.com                   - 12 

-    

Guest – to – Host Messages 

 

Resource Scaling Response 

 
Key  Value Optionality* Example value Description 

“version” integer M 1 Version of the Application Layer 

Messaging 

“resource” string “cpu” M “cpu” The resource to scale. CPU 

scaling is currently supported. 

“direction” string “up” or 

“down” 

M “up” Direction of scaling 

“result” string “success” or 

“fail” 

M “fail” Result of the scaling operation 

“online_cpu” integer M(direction=up, 

result=success) 

4 vCPU number which was 

onlined, if scaling up and 

successful 

“offline_cpu” integer M(direction=down, 

result=success) 

5 vCPU number which was 

offlined, if scaling down and 

successful  

“online_cpus” array of integers M(result=success) [0,1,2,3,4] Array of current online cpus 

when sending response.  

“err_msg” string M(result=fail) “failed to scale up” Error message. 

 M: Mandatory; O: Optional; (Condition) 

 

 

 

 

 

 

 



 

              

Wind River, 500 Wind River Way, Alameda, CA. U.S.A., 94501 tel: 800-545-WIND fax: 510.749.2010 www.windriver.com                   - 13 

-    

Examples 

 

Examples of ‘full’ Resource Scaling JSON messages, containing the Application JSON Message 

Layer encapsulated inside the Base JSON Messaging Layer. 

 

 

Scale Up Request: 

 

TiS’ request to scale up by onlining CPU#4 (Current online CPUs are [0,1,2,3].): 

 
\n{"version":1,"source_addr":"scale-########”,"dest_addr":"cgcs.scale”, 

"data":{"version":1,"timeout_ms":500,"resource":"cpu","direction":"up","onlin

e_cpu":4,"online_cpus":[0,1,2,3,4]}}\n 

 

Guest’s Success Response to Scale Up: 

 
\n {"version":1,"source_addr":"cgcs.scale”,"dest_addr":"scale-

########”,"data":{"version":1,"resource":"cpu","direction":"up","online

_cpu":4,"result":"success","online_cpus":[0,1,2,3,4]}} \n 

 

 

Guest’s Failed Response to Scale Up: 

i.e. indicating an error due to a guest that only supports 4 CPUs: 

 
\n {"version":1,"source_addr":"cgcs.scale”,"dest_addr":"scale-

########”,"data":{"version":1,"resource":"cpu","direction":"up","online

_cpu":4,"result":"fail","err_msg":"Can't open cpu online path: 

/sys/devices/system/cpu/cpu4/online"}}\n 

 

 

 

Scale Down Request: 

 

TiS’ request to scale down (Current online CPUs are [0,1,2,3,4,5]): 

 
\n {"version":1,"source_addr":"scale-########”,"dest_addr":"cgcs.scale”, 

"data":{"version":1,"timeout_ms":500,"resource":"cpu","direction":"down"}}\n 

 

 

Guest’s Success Response to Scale Down: 

 
\n {"version":1,"source_addr":"cgcs.scale”,"dest_addr":"scale-

########”,"data":{"version":1,"resource":"cpu","direction":"down","resu

lt":"success","offline_cpu":5,"online_cpus":[0,1,2,3,4]}}\n 



 

              

Wind River, 500 Wind River Way, Alameda, CA. U.S.A., 94501 tel: 800-545-WIND fax: 510.749.2010 www.windriver.com                   - 14 

-    

 

 

Guest’s Failed Response to Scale Down: 

 
\n {"version":1,"source_addr":"cgcs.scale”,"dest_addr":"scale-

########”,"data":{"version":1,"resource":"cpu","direction":"down","resu

lt":"fail","err_msg":"Some failed message"}}\n 

 

 

Nack: 

 

A Nack from TiS for an invalid response  message sent from Guest. 

 
\n{"version":1,"source_addr":"cgcs.scale”,"dest_addr":"cgcs.scale”,"data":{"v

ersion":1,"msg_type":"nack","log_msg":"failed to parse version"}}\n 

 



 

              

Wind River, 500 Wind River Way, Alameda, CA. U.S.A., 94501 tel: 800-545-WIND fax: 510.749.2010 www.windriver.com                   - 15 

-    

Reference Implementation of Guest Resource Scaling 
 

This section provides an overview of the Linux-based reference implementation of the Guest-

side software for implementing this Host-to-Guest Resource Scaling Messaging-based API in the 

Guest and implementing the appropriate management of the scaled resources in the Guest.  I.e. in 

the case of resource scaling of CPUs, this involves the appropriate on-lining and off-lining of 

CPUs inside the Guest VM.   

 

This reference implementation can be found in the Titanium Server Guest Resource Scaling 

SDK Module.  This Module provides source code and make/build instructions which can be used 

strictly as reference or built and included ‘as is’ in your Guest image.  Full build, install and 

usage instructions can be found in the README files included in the SDK Module.  This section 

simply provides an overview of the reference implementation. 

 

The diagram below provides the architecture diagram of the reference implementation: 

 
Figure 2 – Reference Implementation Architecture for Guest Resource Scaling 

 

 



 

              

Wind River, 500 Wind River Way, Alameda, CA. U.S.A., 94501 tel: 800-545-WIND fax: 510.749.2010 www.windriver.com                   - 16 

-    

Where: 

 

 A Guest Agent Process implements the Base JSON Messaging Layer. 

This includes: 

o opening/reading,/writing and general management of the virtio serial device 

between the Guest and the Host, 

o parsing/processing/formatting of the Base JSON Messaging Layer of the Guest-

Host interface, where processing of the messages involves: 

 the multiplexing/de-multiplexing of Application Layer messages to/from 

registered Guest Application Layer Agents; in this particular case the 

Guest Resource Scaling Agent, 

 the interface between the Guest Agent Process and the Guest Resource 

Scaling Agent process  

 is a message-based interface;  

 specifically a JSON Messaging Layer over a UNIX Datagram 

socket, 

o where the UNIX Socket Address is the Message Group 

Type (cgcs.scaling in this particular case) specified within 

the Base JSON Messaging Layer and  

o where the JSON Message consists of the ‘data’ field 

contents specified within the Base JSON Messaging Layer. 

o NOTE 

 This Guest Agent Process reference implementation is actually contained 

in the Titanium Server Guest Server Group Messaging SDK Module, and 

used to implement the Base JSON Messaging Layer for both Server Group 

Messaging and Resource Scaling Messaging 

 The implementation files are: 

 misc.h, guest_host_msg.h, host_guest_msg_type.h,  

 guest_agent.c, host_guest_msg.c, lib_guest_host_msg.c 

 

 

 A Guest Scaling Agent Process implements the Resource Scaling Application JSON 

Messaging Layer and the code for management of the scaled resources in the Guest.  I.e. 

the appropriate on-lining and off-lining of CPUs inside the Guest VM.   

 

As described above 

o the interface between the Guest Agent Process and the Guest Resource Scaling 

Agent process is a JSON Messaging Layer over a UNIX Datagram socket.   

 where the UNIX Socket Address is the Message Group Type (cgcs.scaling 

in this particular case) specified within the Base JSON Messaging Layer 

and  

 the JSON Message consists of the ‘data’ field contents specified within the 

Base JSON Messaging Layer. 



 

              

Wind River, 500 Wind River Way, Alameda, CA. U.S.A., 94501 tel: 800-545-WIND fax: 510.749.2010 www.windriver.com                   - 17 

-    

 

 

o the on-lining and off-lining of CPUs is done by using the /sys/devices/system/cpu 

virtual filesystem to read and modify the online status of individual cores of the 

cpu device(s), 

 

 /usr/sbin/app_scale_helper SCRIPT-BASED API 

 

as part of the on-lining and off-lining CPU procedure,  

the /usr/sbin/app_scale_helper script is called in in order to provide a 

script-based mechanism for the Guest Application to modify the default 

behavior. 

 

Specifically: 

 before off-lining the CPU, Guest Scaling Agent will make a call to  

 

/usr/sbin/app_scale_helper  --cpu_del 

 

(if it exists) which is expected to pick a vCPU to offline by 

returning the selected vCPU number. 

 

 after on-lining the CPU, Guest Scaling Agent will make a call to  

 

/usr/sbin/app_scale_helper  --cpu_add  <cpu>  <new cpu range> 

 

(if it exists) passing the vCPU number on-lined so the application 

can do any special handling that may be required (e.g. modifying 

the affinity of processes to leverage the new vCPU). 

 

 

o and finally, the Guest Scaling Agent implementation provides an 

init_offline_cpus and offline_cpus script to offline vCPUs in the Guest to match 

the status on the hypervisor.  This covers the case where the Guest VM is booting 

up with some CPUs offlined by the hypervisor. 

 

o NOTE 

  Guest Scaling Agent reference implementation is contained in the 

Titanium Server Guest Resource Scaling SDK Module. 

The implementation files are: 

 misc.h 

 parser.c, guest_scale_agent.c 

 app_scale_helper, init_offline_cpus, offline_cpus 


