diff --git a/bareon_dynamic_allocator/allocators.py b/bareon_dynamic_allocator/allocators.py index 338e442..8a43794 100644 --- a/bareon_dynamic_allocator/allocators.py +++ b/bareon_dynamic_allocator/allocators.py @@ -105,17 +105,33 @@ class DynamicAllocationLinearProgram(object): # matrix self.equality_constraint_vector = np.array([]) + self.upper_bound_constraint_matrix = [] + self.upper_bound_constraint_vector = [] + self.lower_bound_constraint_matrix = [] + self.lower_bound_constraint_vector = [] + # Specify boundaries of each x in the next format (min, max). Use # None for one of min or max when there is no bound. self.bounds = np.array([]) + # For each space, xn (size of the space) is represented + # for each disk as separate variable, so for each + # disk we have len(spaces) * len(disks) sizes + self.x_amount = len(self.disks) * len(self.spaces) + self._init_equation(self.disks, self.spaces) + self._init_min_max() def solve(self): + upper_bound_matrix = self._make_upper_bound_constraint_matrix() or None + upper_bound_vector = self._make_upper_bound_constraint_vector() or None + solution = linprog( self.objective_function_coefficients, A_eq=self.equality_constraint_matrix, b_eq=self.equality_constraint_vector, + A_ub=upper_bound_matrix, + b_ub=upper_bound_vector, bounds=self.bounds, options={"disp": False}) @@ -123,6 +139,41 @@ class DynamicAllocationLinearProgram(object): return self._convert_solution(solution) + + def _init_min_max(self): + for space_idx, space in enumerate(self.spaces): + row = self._make_matrix_row() + max_size = getattr(space, 'max_size', None) + min_size = getattr(space, 'min_size', None) + + for disk_idx in range(len(self.disks)): + row[disk_idx * len(self.spaces) + space_idx] = 1 + + if min_size is not None: + self.lower_bound_constraint_matrix.append(row) + self.lower_bound_constraint_vector.append(min_size) + + if max_size is not None: + self.upper_bound_constraint_matrix.append(row) + self.upper_bound_constraint_vector.append(max_size) + + def _make_matrix_row(self): + return np.zeros(self.x_amount) + + def _make_upper_bound_constraint_matrix(self): + """Upper bound constraint matrix consist of upper bound + matrix and lower bound matrix wich changed sign + """ + return (self.upper_bound_constraint_matrix + + [[-i for i in row] for row in self.lower_bound_constraint_matrix]) + + def _make_upper_bound_constraint_vector(self): + """Upper bound constraint vector consist of upper bound + and lower bound, with changed sign + """ + return (self.upper_bound_constraint_vector + + [-i for i in self.lower_bound_constraint_vector]) + def _convert_solution(self, solution): result = [] @@ -161,10 +212,7 @@ class DynamicAllocationLinearProgram(object): # 0, - x5 multiplier, size of space 1 on 3rd disk, 0 for the first # 0] - x6 multiplier, size of space 2 on 3rd disk, 0 for the first - # For each space, xn (size of the space) is represented - # for each disk as separate variable, so for each - # disk we have len(spaces) * len(disks) sizes - equality_matrix_row = np.zeros(len(spaces) * len(disks)) + equality_matrix_row = self._make_matrix_row() # Amount of coefficients is equal to amount of columns in the matrix self._init_objective_function_coefficient(len(spaces) * len(disks)) @@ -176,6 +224,10 @@ class DynamicAllocationLinearProgram(object): self.equality_constraint_matrix.append(equality_matrix_row) equality_matrix_row = shift(equality_matrix_row, len(spaces), val=0) + # Size of each space should be more or equal to 0 + for _ in range(self.x_amount): + self._add_bound(0, None) + def _add_objective_function_coefficient(self): # By default the algorithm tries to minimize the solution # we should invert sign, in order to make it as a maximization