browbeat/ansible/install/roles/graphite/templates/carbon.conf.j2
akrzos c30e8b950c Expose the carbon port (2003) when installing Carbon/Graphite and docs
* Expose carbon_cache_port to the config file and via the firewall
* Small cleanup job around the Graphite/Grafana playbook for consistency
* Docs for building a monitor host

Change-Id: I9e15eac3ce749c341ebf464f165f73c0a87212e5
2017-06-05 09:19:35 -04:00

410 lines
18 KiB
Django/Jinja

[cache]
# Configure carbon directories.
#
# OS environment variables can be used to tell carbon where graphite is
# installed, where to read configuration from and where to write data.
#
# GRAPHITE_ROOT - Root directory of the graphite installation.
# Defaults to ../
# GRAPHITE_CONF_DIR - Configuration directory (where this file lives).
# Defaults to $GRAPHITE_ROOT/conf/
# GRAPHITE_STORAGE_DIR - Storage directory for whisper/rrd/log/pid files.
# Defaults to $GRAPHITE_ROOT/storage/
#
# To change other directory paths, add settings to this file. The following
# configuration variables are available with these default values:
#
# STORAGE_DIR = $GRAPHITE_STORAGE_DIR
# LOCAL_DATA_DIR = STORAGE_DIR/whisper/
# WHITELISTS_DIR = STORAGE_DIR/lists/
# CONF_DIR = STORAGE_DIR/conf/
# LOG_DIR = STORAGE_DIR/log/
# PID_DIR = STORAGE_DIR/
#
# For FHS style directory structures, use:
#
# STORAGE_DIR = /var/lib/carbon/
# CONF_DIR = /etc/carbon/
# LOG_DIR = /var/log/carbon/
# PID_DIR = /var/run/
#
#LOCAL_DATA_DIR = /opt/graphite/storage/whisper/
STORAGE_DIR = /var/lib/carbon/
LOCAL_DATA_DIR = /var/lib/carbon/whisper/
WHITELISTS_DIR = /var/lib/carbon/lists/
CONF_DIR = /etc/carbon/
LOG_DIR = /var/log/carbon/
PID_DIR = /var/run/
# Enable daily log rotation. If disabled, carbon will automatically re-open
# the file if it's rotated out of place (e.g. by logrotate daemon)
ENABLE_LOGROTATION = True
# Specify the user to drop privileges to
# If this is blank carbon runs as the user that invokes it
# This user must have write access to the local data directory
USER = carbon
#
# NOTE: The above settings must be set under [relay] and [aggregator]
# to take effect for those daemons as well
# Limit the size of the cache to avoid swapping or becoming CPU bound.
# Sorts and serving cache queries gets more expensive as the cache grows.
# Use the value "inf" (infinity) for an unlimited cache size.
MAX_CACHE_SIZE = inf
# Limits the number of whisper update_many() calls per second, which effectively
# means the number of write requests sent to the disk. This is intended to
# prevent over-utilizing the disk and thus starving the rest of the system.
# When the rate of required updates exceeds this, then carbon's caching will
# take effect and increase the overall throughput accordingly.
MAX_UPDATES_PER_SECOND = 500
# If defined, this changes the MAX_UPDATES_PER_SECOND in Carbon when a
# stop/shutdown is initiated. This helps when MAX_UPDATES_PER_SECOND is
# relatively low and carbon has cached a lot of updates; it enables the carbon
# daemon to shutdown more quickly.
# MAX_UPDATES_PER_SECOND_ON_SHUTDOWN = 1000
# Softly limits the number of whisper files that get created each minute.
# Setting this value low (e.g. 50) is a good way to ensure that your carbon
# system will not be adversely impacted when a bunch of new metrics are
# sent to it. The trade off is that any metrics received in excess of this
# value will be silently dropped, and the whisper file will not be created
# until such point as a subsequent metric is received and fits within the
# defined rate limit. Setting this value high (like "inf" for infinity) will
# cause carbon to create the files quickly but at the risk of increased I/O.
MAX_CREATES_PER_MINUTE = 2000
# Set the interface and port for the line (plain text) listener. Setting the
# interface to 0.0.0.0 listens on all interfaces. Port can be set to 0 to
# disable this listener if it is not required.
LINE_RECEIVER_INTERFACE = 0.0.0.0
LINE_RECEIVER_PORT = {{carbon_cache_port}}
# Set the TCP backlog for the listen socket created by the line receiver. You
# shouldn't change this unless you know what you're doing.
# LINE_RECEIVER_BACKLOG = 1024
# Set this to True to enable the UDP listener. By default this is off
# because it is very common to run multiple carbon daemons and managing
# another (rarely used) port for every carbon instance is not fun.
ENABLE_UDP_LISTENER = False
UDP_RECEIVER_INTERFACE = 0.0.0.0
UDP_RECEIVER_PORT = 2003
# Set the interface and port for the pickle listener. Setting the interface to
# 0.0.0.0 listens on all interfaces. Port can be set to 0 to disable this
# listener if it is not required.
PICKLE_RECEIVER_INTERFACE = 0.0.0.0
PICKLE_RECEIVER_PORT = 2004
# Set the TCP backlog for the listen socket created by the pickle receiver. You
# shouldn't change this unless you know what you're doing.
# PICKLE_RECEIVER_BACKLOG = 1024
# Set to false to disable logging of successful connections
LOG_LISTENER_CONNECTIONS = True
# Per security concerns outlined in Bug #817247 the pickle receiver
# will use a more secure and slightly less efficient unpickler.
# Set this to True to revert to the old-fashioned insecure unpickler.
USE_INSECURE_UNPICKLER = False
CACHE_QUERY_INTERFACE = 0.0.0.0
CACHE_QUERY_PORT = 7002
# Set the TCP backlog for the listen socket created by the cache query
# listener. You shouldn't change this unless you know what you're doing.
# CACHE_QUERY_BACKLOG = 1024
# Set this to False to drop datapoints received after the cache
# reaches MAX_CACHE_SIZE. If this is True (the default) then sockets
# over which metrics are received will temporarily stop accepting
# data until the cache size falls below 95% MAX_CACHE_SIZE.
USE_FLOW_CONTROL = True
# By default, carbon-cache will log every whisper update and cache hit. This can be excessive and
# degrade performance if logging on the same volume as the whisper data is stored.
LOG_UPDATES = False
LOG_CACHE_HITS = False
LOG_CACHE_QUEUE_SORTS = True
# The thread that writes metrics to disk can use on of the following strategies
# determining the order in which metrics are removed from cache and flushed to
# disk. The default option preserves the same behavior as has been historically
# available in version 0.9.10.
#
# sorted - All metrics in the cache will be counted and an ordered list of
# them will be sorted according to the number of datapoints in the cache at the
# moment of the list's creation. Metrics will then be flushed from the cache to
# disk in that order.
#
# max - The writer thread will always pop and flush the metric from cache
# that has the most datapoints. This will give a strong flush preference to
# frequently updated metrics and will also reduce random file-io. Infrequently
# updated metrics may only ever be persisted to disk at daemon shutdown if
# there are a large number of metrics which receive very frequent updates OR if
# disk i/o is very slow.
#
# naive - Metrics will be flushed from the cache to disk in an unordered
# fashion. This strategy may be desirable in situations where the storage for
# whisper files is solid state, CPU resources are very limited or deference to
# the OS's i/o scheduler is expected to compensate for the random write
# pattern.
#
CACHE_WRITE_STRATEGY = sorted
# On some systems it is desirable for whisper to write synchronously.
# Set this option to True if you'd like to try this. Basically it will
# shift the onus of buffering writes from the kernel into carbon's cache.
WHISPER_AUTOFLUSH = False
# By default new Whisper files are created pre-allocated with the data region
# filled with zeros to prevent fragmentation and speed up contiguous reads and
# writes (which are common). Enabling this option will cause Whisper to create
# the file sparsely instead. Enabling this option may allow a large increase of
# MAX_CREATES_PER_MINUTE but may have longer term performance implications
# depending on the underlying storage configuration.
# WHISPER_SPARSE_CREATE = False
# Only beneficial on linux filesystems that support the fallocate system call.
# It maintains the benefits of contiguous reads/writes, but with a potentially
# much faster creation speed, by allowing the kernel to handle the block
# allocation and zero-ing. Enabling this option may allow a large increase of
# MAX_CREATES_PER_MINUTE. If enabled on an OS or filesystem that is unsupported
# this option will gracefully fallback to standard POSIX file access methods.
WHISPER_FALLOCATE_CREATE = True
# Enabling this option will cause Whisper to lock each Whisper file it writes
# to with an exclusive lock (LOCK_EX, see: man 2 flock). This is useful when
# multiple carbon-cache daemons are writing to the same files
# WHISPER_LOCK_WRITES = False
# Set this to True to enable whitelisting and blacklisting of metrics in
# CONF_DIR/whitelist and CONF_DIR/blacklist. If the whitelist is missing or
# empty, all metrics will pass through
# USE_WHITELIST = False
# By default, carbon itself will log statistics (such as a count,
# metricsReceived) with the top level prefix of 'carbon' at an interval of 60
# seconds. Set CARBON_METRIC_INTERVAL to 0 to disable instrumentation
# CARBON_METRIC_PREFIX = carbon
# CARBON_METRIC_INTERVAL = 60
# Enable AMQP if you want to receve metrics using an amqp broker
# ENABLE_AMQP = False
# Verbose means a line will be logged for every metric received
# useful for testing
# AMQP_VERBOSE = False
# AMQP_HOST = localhost
# AMQP_PORT = 5672
# AMQP_VHOST = /
# AMQP_USER = guest
# AMQP_PASSWORD = guest
# AMQP_EXCHANGE = graphite
# AMQP_METRIC_NAME_IN_BODY = False
# The manhole interface allows you to SSH into the carbon daemon
# and get a python interpreter. BE CAREFUL WITH THIS! If you do
# something like time.sleep() in the interpreter, the whole process
# will sleep! This is *extremely* helpful in debugging, assuming
# you are familiar with the code. If you are not, please don't
# mess with this, you are asking for trouble :)
#
# ENABLE_MANHOLE = False
# MANHOLE_INTERFACE = 127.0.0.1
# MANHOLE_PORT = 7222
# MANHOLE_USER = admin
# MANHOLE_PUBLIC_KEY = ssh-rsa AAAAB3NzaC1yc2EAAAABiwAaAIEAoxN0sv/e4eZCPpi3N3KYvyzRaBaMeS2RsOQ/cDuKv11dlNzVeiyc3RFmCv5Rjwn/lQ79y0zyHxw67qLyhQ/kDzINc4cY41ivuQXm2tPmgvexdrBv5nsfEpjs3gLZfJnyvlcVyWK/lId8WUvEWSWHTzsbtmXAF2raJMdgLTbQ8wE=
# Patterns for all of the metrics this machine will store. Read more at
# http://en.wikipedia.org/wiki/Advanced_Message_Queuing_Protocol#Bindings
#
# Example: store all sales, linux servers, and utilization metrics
# BIND_PATTERNS = sales.#, servers.linux.#, #.utilization
#
# Example: store everything
# BIND_PATTERNS = #
# To configure special settings for the carbon-cache instance 'b', uncomment this:
#[cache:b]
#LINE_RECEIVER_PORT = 2103
#PICKLE_RECEIVER_PORT = 2104
#CACHE_QUERY_PORT = 7102
# and any other settings you want to customize, defaults are inherited
# from [carbon] section.
# You can then specify the --instance=b option to manage this instance
[relay]
LINE_RECEIVER_INTERFACE = 0.0.0.0
LINE_RECEIVER_PORT = 2013
PICKLE_RECEIVER_INTERFACE = 0.0.0.0
PICKLE_RECEIVER_PORT = 2014
# Set to false to disable logging of successful connections
LOG_LISTENER_CONNECTIONS = True
# Carbon-relay has several options for metric routing controlled by RELAY_METHOD
#
# Use relay-rules.conf to route metrics to destinations based on pattern rules
#RELAY_METHOD = rules
#
# Use consistent-hashing for even distribution of metrics between destinations
#RELAY_METHOD = consistent-hashing
#
# Use consistent-hashing but take into account an aggregation-rules.conf shared
# by downstream carbon-aggregator daemons. This will ensure that all metrics
# that map to a given aggregation rule are sent to the same carbon-aggregator
# instance.
# Enable this for carbon-relays that send to a group of carbon-aggregators
#RELAY_METHOD = aggregated-consistent-hashing
RELAY_METHOD = rules
# If you use consistent-hashing you can add redundancy by replicating every
# datapoint to more than one machine.
REPLICATION_FACTOR = 1
# For REPLICATION_FACTOR >=2, set DIVERSE_REPLICAS to True to guarantee replicas
# across distributed hosts. With this setting disabled, it's possible that replicas
# may be sent to different caches on the same host. This has been the default
# behavior since introduction of 'consistent-hashing' relay method.
# Note that enabling this on an existing pre-0.9.14 cluster will require rebalancing
# your metrics across the cluster nodes using a tool like Carbonate.
#DIVERSE_REPLICAS = False
# This is a list of carbon daemons we will send any relayed or
# generated metrics to. The default provided would send to a single
# carbon-cache instance on the default port. However if you
# use multiple carbon-cache instances then it would look like this:
#
# DESTINATIONS = 127.0.0.1:2004:a, 127.0.0.1:2104:b
#
# The general form is IP:PORT:INSTANCE where the :INSTANCE part is
# optional and refers to the "None" instance if omitted.
#
# Note that if the destinations are all carbon-caches then this should
# exactly match the webapp's CARBONLINK_HOSTS setting in terms of
# instances listed (order matters!).
#
# If using RELAY_METHOD = rules, all destinations used in relay-rules.conf
# must be defined in this list
DESTINATIONS = 127.0.0.1:2004
# This defines the maximum "message size" between carbon daemons.
# You shouldn't need to tune this unless you really know what you're doing.
MAX_DATAPOINTS_PER_MESSAGE = 500
MAX_QUEUE_SIZE = 10000
# This is the percentage that the queue must be empty before it will accept
# more messages. For a larger site, if the queue is very large it makes sense
# to tune this to allow for incoming stats. So if you have an average
# flow of 100k stats/minute, and a MAX_QUEUE_SIZE of 3,000,000, it makes sense
# to allow stats to start flowing when you've cleared the queue to 95% since
# you should have space to accommodate the next minute's worth of stats
# even before the relay incrementally clears more of the queue
QUEUE_LOW_WATERMARK_PCT = 0.8
# Set this to False to drop datapoints when any send queue (sending datapoints
# to a downstream carbon daemon) hits MAX_QUEUE_SIZE. If this is True (the
# default) then sockets over which metrics are received will temporarily stop accepting
# data until the send queues fall below QUEUE_LOW_WATERMARK_PCT * MAX_QUEUE_SIZE.
USE_FLOW_CONTROL = True
# Set this to True to enable whitelisting and blacklisting of metrics in
# CONF_DIR/whitelist and CONF_DIR/blacklist. If the whitelist is missing or
# empty, all metrics will pass through
# USE_WHITELIST = False
# By default, carbon itself will log statistics (such as a count,
# metricsReceived) with the top level prefix of 'carbon' at an interval of 60
# seconds. Set CARBON_METRIC_INTERVAL to 0 to disable instrumentation
# CARBON_METRIC_PREFIX = carbon
# CARBON_METRIC_INTERVAL = 60
[aggregator]
LINE_RECEIVER_INTERFACE = 0.0.0.0
LINE_RECEIVER_PORT = 2023
PICKLE_RECEIVER_INTERFACE = 0.0.0.0
PICKLE_RECEIVER_PORT = 2024
# Set to false to disable logging of successful connections
LOG_LISTENER_CONNECTIONS = True
# If set true, metric received will be forwarded to DESTINATIONS in addition to
# the output of the aggregation rules. If set false the carbon-aggregator will
# only ever send the output of aggregation. Default value is set to false and will not forward
FORWARD_ALL = False
# Filenames of the configuration files to use for this instance of aggregator.
# Filenames are relative to CONF_DIR.
#
# AGGREGATION_RULES = aggregation-rules.conf
# REWRITE_RULES = rewrite-rules.conf
# This is a list of carbon daemons we will send any relayed or
# generated metrics to. The default provided would send to a single
# carbon-cache instance on the default port. However if you
# use multiple carbon-cache instances then it would look like this:
#
# DESTINATIONS = 127.0.0.1:2004:a, 127.0.0.1:2104:b
#
# The format is comma-delimited IP:PORT:INSTANCE where the :INSTANCE part is
# optional and refers to the "None" instance if omitted.
#
# Note that if the destinations are all carbon-caches then this should
# exactly match the webapp's CARBONLINK_HOSTS setting in terms of
# instances listed (order matters!).
DESTINATIONS = 127.0.0.1:2004
# If you want to add redundancy to your data by replicating every
# datapoint to more than one machine, increase this.
REPLICATION_FACTOR = 1
# This is the maximum number of datapoints that can be queued up
# for a single destination. Once this limit is hit, we will
# stop accepting new data if USE_FLOW_CONTROL is True, otherwise
# we will drop any subsequently received datapoints.
MAX_QUEUE_SIZE = 10000
# Set this to False to drop datapoints when any send queue (sending datapoints
# to a downstream carbon daemon) hits MAX_QUEUE_SIZE. If this is True (the
# default) then sockets over which metrics are received will temporarily stop accepting
# data until the send queues fall below 80% MAX_QUEUE_SIZE.
USE_FLOW_CONTROL = True
# This defines the maximum "message size" between carbon daemons.
# You shouldn't need to tune this unless you really know what you're doing.
MAX_DATAPOINTS_PER_MESSAGE = 500
# This defines how many datapoints the aggregator remembers for
# each metric. Aggregation only happens for datapoints that fall in
# the past MAX_AGGREGATION_INTERVALS * intervalSize seconds.
MAX_AGGREGATION_INTERVALS = 5
# By default (WRITE_BACK_FREQUENCY = 0), carbon-aggregator will write back
# aggregated data points once every rule.frequency seconds, on a per-rule basis.
# Set this (WRITE_BACK_FREQUENCY = N) to write back all aggregated data points
# every N seconds, independent of rule frequency. This is useful, for example,
# to be able to query partially aggregated metrics from carbon-cache without
# having to first wait rule.frequency seconds.
# WRITE_BACK_FREQUENCY = 0
# Set this to True to enable whitelisting and blacklisting of metrics in
# CONF_DIR/whitelist and CONF_DIR/blacklist. If the whitelist is missing or
# empty, all metrics will pass through
# USE_WHITELIST = False
# By default, carbon itself will log statistics (such as a count,
# metricsReceived) with the top level prefix of 'carbon' at an interval of 60
# seconds. Set CARBON_METRIC_INTERVAL to 0 to disable instrumentation
# CARBON_METRIC_PREFIX = carbon
# CARBON_METRIC_INTERVAL = 60