stackube/vendor/github.com/stretchr/testify/assert/assertions.go
mozhulee 2c716e0922 Add iptables unit tests
including
* use k8s utils/exec package
* add iptables unit tests

Change-Id: I4cd1f7b5a600fd6088ba179c569ce367abc2a841
Signed-off-by: mozhuli <21621232@zju.edu.cn>
2017-08-16 15:52:16 +08:00

980 lines
26 KiB
Go

package assert
import (
"bufio"
"bytes"
"encoding/json"
"fmt"
"math"
"reflect"
"regexp"
"runtime"
"strings"
"time"
"unicode"
"unicode/utf8"
"github.com/davecgh/go-spew/spew"
"github.com/pmezard/go-difflib/difflib"
)
// TestingT is an interface wrapper around *testing.T
type TestingT interface {
Errorf(format string, args ...interface{})
}
// Comparison a custom function that returns true on success and false on failure
type Comparison func() (success bool)
/*
Helper functions
*/
// ObjectsAreEqual determines if two objects are considered equal.
//
// This function does no assertion of any kind.
func ObjectsAreEqual(expected, actual interface{}) bool {
if expected == nil || actual == nil {
return expected == actual
}
return reflect.DeepEqual(expected, actual)
}
// ObjectsAreEqualValues gets whether two objects are equal, or if their
// values are equal.
func ObjectsAreEqualValues(expected, actual interface{}) bool {
if ObjectsAreEqual(expected, actual) {
return true
}
actualType := reflect.TypeOf(actual)
if actualType == nil {
return false
}
expectedValue := reflect.ValueOf(expected)
if expectedValue.IsValid() && expectedValue.Type().ConvertibleTo(actualType) {
// Attempt comparison after type conversion
return reflect.DeepEqual(expectedValue.Convert(actualType).Interface(), actual)
}
return false
}
/* CallerInfo is necessary because the assert functions use the testing object
internally, causing it to print the file:line of the assert method, rather than where
the problem actually occured in calling code.*/
// CallerInfo returns an array of strings containing the file and line number
// of each stack frame leading from the current test to the assert call that
// failed.
func CallerInfo() []string {
pc := uintptr(0)
file := ""
line := 0
ok := false
name := ""
callers := []string{}
for i := 0; ; i++ {
pc, file, line, ok = runtime.Caller(i)
if !ok {
return nil
}
// This is a huge edge case, but it will panic if this is the case, see #180
if file == "<autogenerated>" {
break
}
parts := strings.Split(file, "/")
dir := parts[len(parts)-2]
file = parts[len(parts)-1]
if (dir != "assert" && dir != "mock" && dir != "require") || file == "mock_test.go" {
callers = append(callers, fmt.Sprintf("%s:%d", file, line))
}
f := runtime.FuncForPC(pc)
if f == nil {
break
}
name = f.Name()
// Drop the package
segments := strings.Split(name, ".")
name = segments[len(segments)-1]
if isTest(name, "Test") ||
isTest(name, "Benchmark") ||
isTest(name, "Example") {
break
}
}
return callers
}
// Stolen from the `go test` tool.
// isTest tells whether name looks like a test (or benchmark, according to prefix).
// It is a Test (say) if there is a character after Test that is not a lower-case letter.
// We don't want TesticularCancer.
func isTest(name, prefix string) bool {
if !strings.HasPrefix(name, prefix) {
return false
}
if len(name) == len(prefix) { // "Test" is ok
return true
}
rune, _ := utf8.DecodeRuneInString(name[len(prefix):])
return !unicode.IsLower(rune)
}
// getWhitespaceString returns a string that is long enough to overwrite the default
// output from the go testing framework.
func getWhitespaceString() string {
_, file, line, ok := runtime.Caller(1)
if !ok {
return ""
}
parts := strings.Split(file, "/")
file = parts[len(parts)-1]
return strings.Repeat(" ", len(fmt.Sprintf("%s:%d: ", file, line)))
}
func messageFromMsgAndArgs(msgAndArgs ...interface{}) string {
if len(msgAndArgs) == 0 || msgAndArgs == nil {
return ""
}
if len(msgAndArgs) == 1 {
return msgAndArgs[0].(string)
}
if len(msgAndArgs) > 1 {
return fmt.Sprintf(msgAndArgs[0].(string), msgAndArgs[1:]...)
}
return ""
}
// Indents all lines of the message by appending a number of tabs to each line, in an output format compatible with Go's
// test printing (see inner comment for specifics)
func indentMessageLines(message string, tabs int) string {
outBuf := new(bytes.Buffer)
for i, scanner := 0, bufio.NewScanner(strings.NewReader(message)); scanner.Scan(); i++ {
if i != 0 {
outBuf.WriteRune('\n')
}
for ii := 0; ii < tabs; ii++ {
outBuf.WriteRune('\t')
// Bizarrely, all lines except the first need one fewer tabs prepended, so deliberately advance the counter
// by 1 prematurely.
if ii == 0 && i > 0 {
ii++
}
}
outBuf.WriteString(scanner.Text())
}
return outBuf.String()
}
// Fail reports a failure through
func Fail(t TestingT, failureMessage string, msgAndArgs ...interface{}) bool {
message := messageFromMsgAndArgs(msgAndArgs...)
errorTrace := strings.Join(CallerInfo(), "\n\r\t\t\t")
if len(message) > 0 {
t.Errorf("\r%s\r\tError Trace:\t%s\n"+
"\r\tError:%s\n"+
"\r\tMessages:\t%s\n\r",
getWhitespaceString(),
errorTrace,
indentMessageLines(failureMessage, 2),
message)
} else {
t.Errorf("\r%s\r\tError Trace:\t%s\n"+
"\r\tError:%s\n\r",
getWhitespaceString(),
errorTrace,
indentMessageLines(failureMessage, 2))
}
return false
}
// Implements asserts that an object is implemented by the specified interface.
//
// assert.Implements(t, (*MyInterface)(nil), new(MyObject), "MyObject")
func Implements(t TestingT, interfaceObject interface{}, object interface{}, msgAndArgs ...interface{}) bool {
interfaceType := reflect.TypeOf(interfaceObject).Elem()
if !reflect.TypeOf(object).Implements(interfaceType) {
return Fail(t, fmt.Sprintf("%T must implement %v", object, interfaceType), msgAndArgs...)
}
return true
}
// IsType asserts that the specified objects are of the same type.
func IsType(t TestingT, expectedType interface{}, object interface{}, msgAndArgs ...interface{}) bool {
if !ObjectsAreEqual(reflect.TypeOf(object), reflect.TypeOf(expectedType)) {
return Fail(t, fmt.Sprintf("Object expected to be of type %v, but was %v", reflect.TypeOf(expectedType), reflect.TypeOf(object)), msgAndArgs...)
}
return true
}
// Equal asserts that two objects are equal.
//
// assert.Equal(t, 123, 123, "123 and 123 should be equal")
//
// Returns whether the assertion was successful (true) or not (false).
func Equal(t TestingT, expected, actual interface{}, msgAndArgs ...interface{}) bool {
if !ObjectsAreEqual(expected, actual) {
diff := diff(expected, actual)
return Fail(t, fmt.Sprintf("Not equal: %#v (expected)\n"+
" != %#v (actual)%s", expected, actual, diff), msgAndArgs...)
}
return true
}
// EqualValues asserts that two objects are equal or convertable to the same types
// and equal.
//
// assert.EqualValues(t, uint32(123), int32(123), "123 and 123 should be equal")
//
// Returns whether the assertion was successful (true) or not (false).
func EqualValues(t TestingT, expected, actual interface{}, msgAndArgs ...interface{}) bool {
if !ObjectsAreEqualValues(expected, actual) {
return Fail(t, fmt.Sprintf("Not equal: %#v (expected)\n"+
" != %#v (actual)", expected, actual), msgAndArgs...)
}
return true
}
// Exactly asserts that two objects are equal is value and type.
//
// assert.Exactly(t, int32(123), int64(123), "123 and 123 should NOT be equal")
//
// Returns whether the assertion was successful (true) or not (false).
func Exactly(t TestingT, expected, actual interface{}, msgAndArgs ...interface{}) bool {
aType := reflect.TypeOf(expected)
bType := reflect.TypeOf(actual)
if aType != bType {
return Fail(t, fmt.Sprintf("Types expected to match exactly\n\r\t%v != %v", aType, bType), msgAndArgs...)
}
return Equal(t, expected, actual, msgAndArgs...)
}
// NotNil asserts that the specified object is not nil.
//
// assert.NotNil(t, err, "err should be something")
//
// Returns whether the assertion was successful (true) or not (false).
func NotNil(t TestingT, object interface{}, msgAndArgs ...interface{}) bool {
if !isNil(object) {
return true
}
return Fail(t, "Expected value not to be nil.", msgAndArgs...)
}
// isNil checks if a specified object is nil or not, without Failing.
func isNil(object interface{}) bool {
if object == nil {
return true
}
value := reflect.ValueOf(object)
kind := value.Kind()
if kind >= reflect.Chan && kind <= reflect.Slice && value.IsNil() {
return true
}
return false
}
// Nil asserts that the specified object is nil.
//
// assert.Nil(t, err, "err should be nothing")
//
// Returns whether the assertion was successful (true) or not (false).
func Nil(t TestingT, object interface{}, msgAndArgs ...interface{}) bool {
if isNil(object) {
return true
}
return Fail(t, fmt.Sprintf("Expected nil, but got: %#v", object), msgAndArgs...)
}
var numericZeros = []interface{}{
int(0),
int8(0),
int16(0),
int32(0),
int64(0),
uint(0),
uint8(0),
uint16(0),
uint32(0),
uint64(0),
float32(0),
float64(0),
}
// isEmpty gets whether the specified object is considered empty or not.
func isEmpty(object interface{}) bool {
if object == nil {
return true
} else if object == "" {
return true
} else if object == false {
return true
}
for _, v := range numericZeros {
if object == v {
return true
}
}
objValue := reflect.ValueOf(object)
switch objValue.Kind() {
case reflect.Map:
fallthrough
case reflect.Slice, reflect.Chan:
{
return (objValue.Len() == 0)
}
case reflect.Ptr:
{
if objValue.IsNil() {
return true
}
switch object.(type) {
case *time.Time:
return object.(*time.Time).IsZero()
default:
return false
}
}
}
return false
}
// Empty asserts that the specified object is empty. I.e. nil, "", false, 0 or either
// a slice or a channel with len == 0.
//
// assert.Empty(t, obj)
//
// Returns whether the assertion was successful (true) or not (false).
func Empty(t TestingT, object interface{}, msgAndArgs ...interface{}) bool {
pass := isEmpty(object)
if !pass {
Fail(t, fmt.Sprintf("Should be empty, but was %v", object), msgAndArgs...)
}
return pass
}
// NotEmpty asserts that the specified object is NOT empty. I.e. not nil, "", false, 0 or either
// a slice or a channel with len == 0.
//
// if assert.NotEmpty(t, obj) {
// assert.Equal(t, "two", obj[1])
// }
//
// Returns whether the assertion was successful (true) or not (false).
func NotEmpty(t TestingT, object interface{}, msgAndArgs ...interface{}) bool {
pass := !isEmpty(object)
if !pass {
Fail(t, fmt.Sprintf("Should NOT be empty, but was %v", object), msgAndArgs...)
}
return pass
}
// getLen try to get length of object.
// return (false, 0) if impossible.
func getLen(x interface{}) (ok bool, length int) {
v := reflect.ValueOf(x)
defer func() {
if e := recover(); e != nil {
ok = false
}
}()
return true, v.Len()
}
// Len asserts that the specified object has specific length.
// Len also fails if the object has a type that len() not accept.
//
// assert.Len(t, mySlice, 3, "The size of slice is not 3")
//
// Returns whether the assertion was successful (true) or not (false).
func Len(t TestingT, object interface{}, length int, msgAndArgs ...interface{}) bool {
ok, l := getLen(object)
if !ok {
return Fail(t, fmt.Sprintf("\"%s\" could not be applied builtin len()", object), msgAndArgs...)
}
if l != length {
return Fail(t, fmt.Sprintf("\"%s\" should have %d item(s), but has %d", object, length, l), msgAndArgs...)
}
return true
}
// True asserts that the specified value is true.
//
// assert.True(t, myBool, "myBool should be true")
//
// Returns whether the assertion was successful (true) or not (false).
func True(t TestingT, value bool, msgAndArgs ...interface{}) bool {
if value != true {
return Fail(t, "Should be true", msgAndArgs...)
}
return true
}
// False asserts that the specified value is false.
//
// assert.False(t, myBool, "myBool should be false")
//
// Returns whether the assertion was successful (true) or not (false).
func False(t TestingT, value bool, msgAndArgs ...interface{}) bool {
if value != false {
return Fail(t, "Should be false", msgAndArgs...)
}
return true
}
// NotEqual asserts that the specified values are NOT equal.
//
// assert.NotEqual(t, obj1, obj2, "two objects shouldn't be equal")
//
// Returns whether the assertion was successful (true) or not (false).
func NotEqual(t TestingT, expected, actual interface{}, msgAndArgs ...interface{}) bool {
if ObjectsAreEqual(expected, actual) {
return Fail(t, fmt.Sprintf("Should not be: %#v\n", actual), msgAndArgs...)
}
return true
}
// containsElement try loop over the list check if the list includes the element.
// return (false, false) if impossible.
// return (true, false) if element was not found.
// return (true, true) if element was found.
func includeElement(list interface{}, element interface{}) (ok, found bool) {
listValue := reflect.ValueOf(list)
elementValue := reflect.ValueOf(element)
defer func() {
if e := recover(); e != nil {
ok = false
found = false
}
}()
if reflect.TypeOf(list).Kind() == reflect.String {
return true, strings.Contains(listValue.String(), elementValue.String())
}
if reflect.TypeOf(list).Kind() == reflect.Map {
mapKeys := listValue.MapKeys()
for i := 0; i < len(mapKeys); i++ {
if ObjectsAreEqual(mapKeys[i].Interface(), element) {
return true, true
}
}
return true, false
}
for i := 0; i < listValue.Len(); i++ {
if ObjectsAreEqual(listValue.Index(i).Interface(), element) {
return true, true
}
}
return true, false
}
// Contains asserts that the specified string, list(array, slice...) or map contains the
// specified substring or element.
//
// assert.Contains(t, "Hello World", "World", "But 'Hello World' does contain 'World'")
// assert.Contains(t, ["Hello", "World"], "World", "But ["Hello", "World"] does contain 'World'")
// assert.Contains(t, {"Hello": "World"}, "Hello", "But {'Hello': 'World'} does contain 'Hello'")
//
// Returns whether the assertion was successful (true) or not (false).
func Contains(t TestingT, s, contains interface{}, msgAndArgs ...interface{}) bool {
ok, found := includeElement(s, contains)
if !ok {
return Fail(t, fmt.Sprintf("\"%s\" could not be applied builtin len()", s), msgAndArgs...)
}
if !found {
return Fail(t, fmt.Sprintf("\"%s\" does not contain \"%s\"", s, contains), msgAndArgs...)
}
return true
}
// NotContains asserts that the specified string, list(array, slice...) or map does NOT contain the
// specified substring or element.
//
// assert.NotContains(t, "Hello World", "Earth", "But 'Hello World' does NOT contain 'Earth'")
// assert.NotContains(t, ["Hello", "World"], "Earth", "But ['Hello', 'World'] does NOT contain 'Earth'")
// assert.NotContains(t, {"Hello": "World"}, "Earth", "But {'Hello': 'World'} does NOT contain 'Earth'")
//
// Returns whether the assertion was successful (true) or not (false).
func NotContains(t TestingT, s, contains interface{}, msgAndArgs ...interface{}) bool {
ok, found := includeElement(s, contains)
if !ok {
return Fail(t, fmt.Sprintf("\"%s\" could not be applied builtin len()", s), msgAndArgs...)
}
if found {
return Fail(t, fmt.Sprintf("\"%s\" should not contain \"%s\"", s, contains), msgAndArgs...)
}
return true
}
// Condition uses a Comparison to assert a complex condition.
func Condition(t TestingT, comp Comparison, msgAndArgs ...interface{}) bool {
result := comp()
if !result {
Fail(t, "Condition failed!", msgAndArgs...)
}
return result
}
// PanicTestFunc defines a func that should be passed to the assert.Panics and assert.NotPanics
// methods, and represents a simple func that takes no arguments, and returns nothing.
type PanicTestFunc func()
// didPanic returns true if the function passed to it panics. Otherwise, it returns false.
func didPanic(f PanicTestFunc) (bool, interface{}) {
didPanic := false
var message interface{}
func() {
defer func() {
if message = recover(); message != nil {
didPanic = true
}
}()
// call the target function
f()
}()
return didPanic, message
}
// Panics asserts that the code inside the specified PanicTestFunc panics.
//
// assert.Panics(t, func(){
// GoCrazy()
// }, "Calling GoCrazy() should panic")
//
// Returns whether the assertion was successful (true) or not (false).
func Panics(t TestingT, f PanicTestFunc, msgAndArgs ...interface{}) bool {
if funcDidPanic, panicValue := didPanic(f); !funcDidPanic {
return Fail(t, fmt.Sprintf("func %#v should panic\n\r\tPanic value:\t%v", f, panicValue), msgAndArgs...)
}
return true
}
// NotPanics asserts that the code inside the specified PanicTestFunc does NOT panic.
//
// assert.NotPanics(t, func(){
// RemainCalm()
// }, "Calling RemainCalm() should NOT panic")
//
// Returns whether the assertion was successful (true) or not (false).
func NotPanics(t TestingT, f PanicTestFunc, msgAndArgs ...interface{}) bool {
if funcDidPanic, panicValue := didPanic(f); funcDidPanic {
return Fail(t, fmt.Sprintf("func %#v should not panic\n\r\tPanic value:\t%v", f, panicValue), msgAndArgs...)
}
return true
}
// WithinDuration asserts that the two times are within duration delta of each other.
//
// assert.WithinDuration(t, time.Now(), time.Now(), 10*time.Second, "The difference should not be more than 10s")
//
// Returns whether the assertion was successful (true) or not (false).
func WithinDuration(t TestingT, expected, actual time.Time, delta time.Duration, msgAndArgs ...interface{}) bool {
dt := expected.Sub(actual)
if dt < -delta || dt > delta {
return Fail(t, fmt.Sprintf("Max difference between %v and %v allowed is %v, but difference was %v", expected, actual, delta, dt), msgAndArgs...)
}
return true
}
func toFloat(x interface{}) (float64, bool) {
var xf float64
xok := true
switch xn := x.(type) {
case uint8:
xf = float64(xn)
case uint16:
xf = float64(xn)
case uint32:
xf = float64(xn)
case uint64:
xf = float64(xn)
case int:
xf = float64(xn)
case int8:
xf = float64(xn)
case int16:
xf = float64(xn)
case int32:
xf = float64(xn)
case int64:
xf = float64(xn)
case float32:
xf = float64(xn)
case float64:
xf = float64(xn)
default:
xok = false
}
return xf, xok
}
// InDelta asserts that the two numerals are within delta of each other.
//
// assert.InDelta(t, math.Pi, (22 / 7.0), 0.01)
//
// Returns whether the assertion was successful (true) or not (false).
func InDelta(t TestingT, expected, actual interface{}, delta float64, msgAndArgs ...interface{}) bool {
af, aok := toFloat(expected)
bf, bok := toFloat(actual)
if !aok || !bok {
return Fail(t, fmt.Sprintf("Parameters must be numerical"), msgAndArgs...)
}
if math.IsNaN(af) {
return Fail(t, fmt.Sprintf("Actual must not be NaN"), msgAndArgs...)
}
if math.IsNaN(bf) {
return Fail(t, fmt.Sprintf("Expected %v with delta %v, but was NaN", expected, delta), msgAndArgs...)
}
dt := af - bf
if dt < -delta || dt > delta {
return Fail(t, fmt.Sprintf("Max difference between %v and %v allowed is %v, but difference was %v", expected, actual, delta, dt), msgAndArgs...)
}
return true
}
// InDeltaSlice is the same as InDelta, except it compares two slices.
func InDeltaSlice(t TestingT, expected, actual interface{}, delta float64, msgAndArgs ...interface{}) bool {
if expected == nil || actual == nil ||
reflect.TypeOf(actual).Kind() != reflect.Slice ||
reflect.TypeOf(expected).Kind() != reflect.Slice {
return Fail(t, fmt.Sprintf("Parameters must be slice"), msgAndArgs...)
}
actualSlice := reflect.ValueOf(actual)
expectedSlice := reflect.ValueOf(expected)
for i := 0; i < actualSlice.Len(); i++ {
result := InDelta(t, actualSlice.Index(i).Interface(), expectedSlice.Index(i).Interface(), delta)
if !result {
return result
}
}
return true
}
// min(|expected|, |actual|) * epsilon
func calcEpsilonDelta(expected, actual interface{}, epsilon float64) float64 {
af, aok := toFloat(expected)
bf, bok := toFloat(actual)
if !aok || !bok {
// invalid input
return 0
}
if af < 0 {
af = -af
}
if bf < 0 {
bf = -bf
}
var delta float64
if af < bf {
delta = af * epsilon
} else {
delta = bf * epsilon
}
return delta
}
// InEpsilon asserts that expected and actual have a relative error less than epsilon
//
// Returns whether the assertion was successful (true) or not (false).
func InEpsilon(t TestingT, expected, actual interface{}, epsilon float64, msgAndArgs ...interface{}) bool {
delta := calcEpsilonDelta(expected, actual, epsilon)
return InDelta(t, expected, actual, delta, msgAndArgs...)
}
// InEpsilonSlice is the same as InEpsilon, except it compares two slices.
func InEpsilonSlice(t TestingT, expected, actual interface{}, delta float64, msgAndArgs ...interface{}) bool {
if expected == nil || actual == nil ||
reflect.TypeOf(actual).Kind() != reflect.Slice ||
reflect.TypeOf(expected).Kind() != reflect.Slice {
return Fail(t, fmt.Sprintf("Parameters must be slice"), msgAndArgs...)
}
actualSlice := reflect.ValueOf(actual)
expectedSlice := reflect.ValueOf(expected)
for i := 0; i < actualSlice.Len(); i++ {
result := InEpsilon(t, actualSlice.Index(i).Interface(), expectedSlice.Index(i).Interface(), delta)
if !result {
return result
}
}
return true
}
/*
Errors
*/
// NoError asserts that a function returned no error (i.e. `nil`).
//
// actualObj, err := SomeFunction()
// if assert.NoError(t, err) {
// assert.Equal(t, actualObj, expectedObj)
// }
//
// Returns whether the assertion was successful (true) or not (false).
func NoError(t TestingT, err error, msgAndArgs ...interface{}) bool {
if isNil(err) {
return true
}
return Fail(t, fmt.Sprintf("Received unexpected error %q", err), msgAndArgs...)
}
// Error asserts that a function returned an error (i.e. not `nil`).
//
// actualObj, err := SomeFunction()
// if assert.Error(t, err, "An error was expected") {
// assert.Equal(t, err, expectedError)
// }
//
// Returns whether the assertion was successful (true) or not (false).
func Error(t TestingT, err error, msgAndArgs ...interface{}) bool {
message := messageFromMsgAndArgs(msgAndArgs...)
return NotNil(t, err, "An error is expected but got nil. %s", message)
}
// EqualError asserts that a function returned an error (i.e. not `nil`)
// and that it is equal to the provided error.
//
// actualObj, err := SomeFunction()
// if assert.Error(t, err, "An error was expected") {
// assert.Equal(t, err, expectedError)
// }
//
// Returns whether the assertion was successful (true) or not (false).
func EqualError(t TestingT, theError error, errString string, msgAndArgs ...interface{}) bool {
message := messageFromMsgAndArgs(msgAndArgs...)
if !NotNil(t, theError, "An error is expected but got nil. %s", message) {
return false
}
s := "An error with value \"%s\" is expected but got \"%s\". %s"
return Equal(t, errString, theError.Error(),
s, errString, theError.Error(), message)
}
// matchRegexp return true if a specified regexp matches a string.
func matchRegexp(rx interface{}, str interface{}) bool {
var r *regexp.Regexp
if rr, ok := rx.(*regexp.Regexp); ok {
r = rr
} else {
r = regexp.MustCompile(fmt.Sprint(rx))
}
return (r.FindStringIndex(fmt.Sprint(str)) != nil)
}
// Regexp asserts that a specified regexp matches a string.
//
// assert.Regexp(t, regexp.MustCompile("start"), "it's starting")
// assert.Regexp(t, "start...$", "it's not starting")
//
// Returns whether the assertion was successful (true) or not (false).
func Regexp(t TestingT, rx interface{}, str interface{}, msgAndArgs ...interface{}) bool {
match := matchRegexp(rx, str)
if !match {
Fail(t, fmt.Sprintf("Expect \"%v\" to match \"%v\"", str, rx), msgAndArgs...)
}
return match
}
// NotRegexp asserts that a specified regexp does not match a string.
//
// assert.NotRegexp(t, regexp.MustCompile("starts"), "it's starting")
// assert.NotRegexp(t, "^start", "it's not starting")
//
// Returns whether the assertion was successful (true) or not (false).
func NotRegexp(t TestingT, rx interface{}, str interface{}, msgAndArgs ...interface{}) bool {
match := matchRegexp(rx, str)
if match {
Fail(t, fmt.Sprintf("Expect \"%v\" to NOT match \"%v\"", str, rx), msgAndArgs...)
}
return !match
}
// Zero asserts that i is the zero value for its type and returns the truth.
func Zero(t TestingT, i interface{}, msgAndArgs ...interface{}) bool {
if i != nil && !reflect.DeepEqual(i, reflect.Zero(reflect.TypeOf(i)).Interface()) {
return Fail(t, fmt.Sprintf("Should be zero, but was %v", i), msgAndArgs...)
}
return true
}
// NotZero asserts that i is not the zero value for its type and returns the truth.
func NotZero(t TestingT, i interface{}, msgAndArgs ...interface{}) bool {
if i == nil || reflect.DeepEqual(i, reflect.Zero(reflect.TypeOf(i)).Interface()) {
return Fail(t, fmt.Sprintf("Should not be zero, but was %v", i), msgAndArgs...)
}
return true
}
// JSONEq asserts that two JSON strings are equivalent.
//
// assert.JSONEq(t, `{"hello": "world", "foo": "bar"}`, `{"foo": "bar", "hello": "world"}`)
//
// Returns whether the assertion was successful (true) or not (false).
func JSONEq(t TestingT, expected string, actual string, msgAndArgs ...interface{}) bool {
var expectedJSONAsInterface, actualJSONAsInterface interface{}
if err := json.Unmarshal([]byte(expected), &expectedJSONAsInterface); err != nil {
return Fail(t, fmt.Sprintf("Expected value ('%s') is not valid json.\nJSON parsing error: '%s'", expected, err.Error()), msgAndArgs...)
}
if err := json.Unmarshal([]byte(actual), &actualJSONAsInterface); err != nil {
return Fail(t, fmt.Sprintf("Input ('%s') needs to be valid json.\nJSON parsing error: '%s'", actual, err.Error()), msgAndArgs...)
}
return Equal(t, expectedJSONAsInterface, actualJSONAsInterface, msgAndArgs...)
}
func typeAndKind(v interface{}) (reflect.Type, reflect.Kind) {
t := reflect.TypeOf(v)
k := t.Kind()
if k == reflect.Ptr {
t = t.Elem()
k = t.Kind()
}
return t, k
}
// diff returns a diff of both values as long as both are of the same type and
// are a struct, map, slice or array. Otherwise it returns an empty string.
func diff(expected interface{}, actual interface{}) string {
if expected == nil || actual == nil {
return ""
}
et, ek := typeAndKind(expected)
at, _ := typeAndKind(actual)
if et != at {
return ""
}
if ek != reflect.Struct && ek != reflect.Map && ek != reflect.Slice && ek != reflect.Array {
return ""
}
spew.Config.SortKeys = true
e := spew.Sdump(expected)
a := spew.Sdump(actual)
diff, _ := difflib.GetUnifiedDiffString(difflib.UnifiedDiff{
A: difflib.SplitLines(e),
B: difflib.SplitLines(a),
FromFile: "Expected",
FromDate: "",
ToFile: "Actual",
ToDate: "",
Context: 1,
})
return "\n\nDiff:\n" + diff
}