aodh/ceilometer/transformer/conversions.py
Igor Degtiarov a4ad787b3f Fix E265 violations and re-enable gating
E265 got stricter in hacking 0.9, so fix new violations and
re-enable gating.

Change-Id: I64159facb0698c19ea0689e9b1dd5266615ddb45
2014-06-25 13:18:42 +03:00

253 lines
9.2 KiB
Python

#
# Copyright 2013 Red Hat, Inc
#
# Author: Eoghan Glynn <eglynn@redhat.com>
#
# Licensed under the Apache License, Version 2.0 (the "License"); you may
# not use this file except in compliance with the License. You may obtain
# a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
# License for the specific language governing permissions and limitations
# under the License.
import collections
import re
from ceilometer.openstack.common.gettextutils import _
from ceilometer.openstack.common import log
from ceilometer.openstack.common import timeutils
from ceilometer import sample
from ceilometer import transformer
LOG = log.getLogger(__name__)
class Namespace(object):
"""Encapsulates the namespace wrapping the evaluation of the
configured scale factor. This allows nested dicts to be
accessed in the attribute style, and missing attributes
to yield false when used in a boolean expression.
"""
def __init__(self, seed):
self.__dict__ = collections.defaultdict(lambda: Namespace({}))
self.__dict__.update(seed)
for k, v in self.__dict__.iteritems():
if isinstance(v, dict):
self.__dict__[k] = Namespace(v)
def __getattr__(self, attr):
return self.__dict__[attr]
def __getitem__(self, key):
return self.__dict__[key]
def __nonzero__(self):
return len(self.__dict__) > 0
class ScalingTransformer(transformer.TransformerBase):
"""Transformer to apply a scaling conversion.
"""
def __init__(self, source=None, target=None, **kwargs):
"""Initialize transformer with configured parameters.
:param source: dict containing source sample unit
:param target: dict containing target sample name, type,
unit and scaling factor (a missing value
connotes no change)
"""
source = source or {}
target = target or {}
self.source = source
self.target = target
self.scale = target.get('scale')
LOG.debug(_('scaling conversion transformer with source:'
' %(source)s target: %(target)s:')
% {'source': source,
'target': target})
super(ScalingTransformer, self).__init__(**kwargs)
def _scale(self, s):
"""Apply the scaling factor (either a straight multiplicative
factor or else a string to be eval'd).
"""
ns = Namespace(s.as_dict())
scale = self.scale
return ((eval(scale, {}, ns) if isinstance(scale, basestring)
else s.volume * scale) if scale else s.volume)
def _map(self, s, attr):
"""Apply the name or unit mapping if configured.
"""
mapped = None
from_ = self.source.get('map_from')
to_ = self.target.get('map_to')
if from_ and to_:
if from_.get(attr) and to_.get(attr):
try:
mapped = re.sub(from_[attr], to_[attr], getattr(s, attr))
except Exception:
pass
return mapped or self.target.get(attr, getattr(s, attr))
def _convert(self, s, growth=1):
"""Transform the appropriate sample fields.
"""
return sample.Sample(
name=self._map(s, 'name'),
unit=self._map(s, 'unit'),
type=self.target.get('type', s.type),
volume=self._scale(s) * growth,
user_id=s.user_id,
project_id=s.project_id,
resource_id=s.resource_id,
timestamp=s.timestamp,
resource_metadata=s.resource_metadata
)
def handle_sample(self, context, s):
"""Handle a sample, converting if necessary."""
LOG.debug(_('handling sample %s'), (s,))
if (self.source.get('unit', s.unit) == s.unit):
s = self._convert(s)
LOG.debug(_('converted to: %s'), (s,))
return s
class RateOfChangeTransformer(ScalingTransformer):
"""Transformer based on the rate of change of a sample volume,
for example taking the current and previous volumes of a
cumulative sample and producing a gauge value based on the
proportion of some maximum used.
"""
def __init__(self, **kwargs):
"""Initialize transformer with configured parameters.
"""
super(RateOfChangeTransformer, self).__init__(**kwargs)
self.cache = {}
self.scale = self.scale or '1'
def handle_sample(self, context, s):
"""Handle a sample, converting if necessary."""
LOG.debug(_('handling sample %s'), (s,))
key = s.name + s.resource_id
prev = self.cache.get(key)
timestamp = timeutils.parse_isotime(s.timestamp)
self.cache[key] = (s.volume, timestamp)
if prev:
prev_volume = prev[0]
prev_timestamp = prev[1]
time_delta = timeutils.delta_seconds(prev_timestamp, timestamp)
# we only allow negative deltas for noncumulative samples, whereas
# for cumulative we assume that a reset has occurred in the interim
# so that the current volume gives a lower bound on growth
volume_delta = (s.volume - prev_volume
if (prev_volume <= s.volume or
s.type != sample.TYPE_CUMULATIVE)
else s.volume)
rate_of_change = ((1.0 * volume_delta / time_delta)
if time_delta else 0.0)
s = self._convert(s, rate_of_change)
LOG.debug(_('converted to: %s'), (s,))
else:
LOG.warn(_('dropping sample with no predecessor: %s'),
(s,))
s = None
return s
class AggregatorTransformer(ScalingTransformer):
"""Transformer that aggregate sample until a threshold or/and a
retention_time, and then flush them out in the wild.
Example:
To aggregate sample by resource_metadata and keep the
resource_metadata of the latest received sample;
AggregatorTransformer(retention_time=60, resource_metadata='last')
To aggregate sample by user_id and resource_metadata and keep the
user_id of the first received sample and drop the resource_metadata.
AggregatorTransformer(size=15, user_id='first',
resource_metadata='drop')
"""
def __init__(self, size=1, retention_time=None,
project_id=None, user_id=None, resource_metadata="last",
**kwargs):
super(AggregatorTransformer, self).__init__(**kwargs)
self.samples = {}
self.size = size
self.retention_time = retention_time
self.initial_timestamp = None
self.aggregated_samples = 0
self.key_attributes = []
self.merged_attribute_policy = {}
self._init_attribute('project_id', project_id)
self._init_attribute('user_id', user_id)
self._init_attribute('resource_metadata', resource_metadata,
is_droppable=True, mandatory=True)
def _init_attribute(self, name, value, is_droppable=False,
mandatory=False):
drop = ['drop'] if is_droppable else []
if value or mandatory:
if value not in ['last', 'first'] + drop:
LOG.warn('%s is unknown (%s), using last' % (name, value))
value = 'last'
self.merged_attribute_policy[name] = value
else:
self.key_attributes.append(name)
def _get_unique_key(self, s):
non_aggregated_keys = "-".join([getattr(s, field)
for field in self.key_attributes])
# NOTE(sileht): it assumes, a meter always have the same unit/type
return "%s-%s-%s" % (s.name, s.resource_id, non_aggregated_keys)
def handle_sample(self, context, sample):
if not self.initial_timestamp:
self.initial_timestamp = timeutils.parse_strtime(
sample.timestamp)
self.aggregated_samples += 1
key = self._get_unique_key(sample)
if key not in self.samples:
self.samples[key] = self._convert(sample)
if self.merged_attribute_policy[
'resource_metadata'] == 'drop':
self.samples[key].resource_metadata = {}
else:
self.samples[key].volume += self._scale(sample)
for field in self.merged_attribute_policy:
if self.merged_attribute_policy[field] == 'last':
setattr(self.samples[key], field,
getattr(sample, field))
def flush(self, context):
expired = self.retention_time and \
timeutils.is_older_than(self.initial_timestamp,
self.retention_time)
full = self.aggregated_samples >= self.size
if full or expired:
x = self.samples.values()
self.samples = {}
self.aggregated_samples = 0
self.initial_timestamp = None
return x
return []