aodh/doc/source/install/manual.rst
Tong Li 70226205fd Multiple dispatcher enablement
Ceilometer does not allow multiple dispatchers to be configured.
With this implementation, a deployment can be configured to have
multiple dispatchers to direct the meters to database and other
outlet.

blueprint multi-dispatcher-enablement

Change-Id: I68c731f65d198d4fa1220f75752f242e74355dfe
2013-07-17 09:59:50 -04:00

13 KiB

Installing Manually

Installing the Collector

double: installing; collector

  1. If you want to be able to retrieve image counters, you need to instruct Glance to send notifications to the bus by changing notifier_strategy to rabbit or qpid in glance-api.conf and restarting the service.

  2. In order to retrieve object store statistics, ceilometer needs access to swift with ResellerAdmin role. You should give this role to your os_username user for tenant os_tenant_name:

    $ keystone role-create --name=ResellerAdmin
    +----------+----------------------------------+
    | Property |              Value               |
    +----------+----------------------------------+
    |    id    | 462fa46c13fd4798a95a3bfbe27b5e54 |
    |   name   |          ResellerAdmin           |
    +----------+----------------------------------+
    
    $ keystone user-role-add --tenant_id $SERVICE_TENANT \
                             --user_id $CEILOMETER_USER \
                             --role_id 462fa46c13fd4798a95a3bfbe27b5e54

    You'll also need to add the Ceilometer middleware to Swift to account for incoming and outgoing traffic, adding this lines to /etc/swift/proxy-server.conf:

    [filter:ceilometer]
    use = egg:ceilometer#swift

    And adding ceilometer in the pipeline of that same file.

  3. Install MongoDB.

    Follow the instructions to install the MongoDB package for your operating system, then start the service.

  4. Clone the ceilometer git repository to the management server:

    $ cd /opt/stack
    $ git clone https://github.com/openstack/ceilometer.git
  5. As a user with root permissions or sudo privileges, run the ceilometer installer:

    $ cd ceilometer
    $ sudo python setup.py install
  6. Copy the sample configuration files from the source tree to their final location.

    $ mkdir -p /etc/ceilometer
    $ cp etc/ceilometer/*.json /etc/ceilometer
    $ cp etc/ceilometer/*.yaml /etc/ceilometer
    $ cp etc/ceilometer/ceilometer.conf.sample /etc/ceilometer/ceilometer.conf
  7. Edit /etc/ceilometer/ceilometer.conf

    1. Configure RPC

      Set the RPC-related options correctly so ceilometer's daemons can communicate with each other and receive notifications from the other projects.

      In particular, look for the *_control_exchange options and make sure the names are correct. If you did not change the control_exchange settings for the other components, the defaults should be correct.

      Note

      Ceilometer makes extensive use of the messaging bus, but has not yet been tested with ZeroMQ. We recommend using Rabbit or qpid for now.

    2. Set the metering_secret value.

      Set the metering_secret value to a large, random, value. Use the same value in all ceilometer configuration files, on all nodes, so that messages passing between the nodes can be validated.

    Refer to /configuration for details about any other options you might want to modify before starting the service.

  8. Start the collector.

    $ ceilometer-collector

    Note

    The default development configuration of the collector logs to stderr, so you may want to run this step using a screen session or other tool for maintaining a long-running program in the background.

Installing the Compute Agent

double: installing; compute agent

Note

The compute agent must be installed on each nova compute node.

  1. Configure nova.

    The nova compute service needs the following configuration to be set in nova.conf:

    # nova-compute configuration for ceilometer
    instance_usage_audit=True
    instance_usage_audit_period=hour
    notify_on_state_change=vm_and_task_state
    notify_on_any_change=True
    notification_driver=nova.openstack.common.notifier.rpc_notifier
    notification_driver=ceilometer.compute.nova_notifier
  2. Clone the ceilometer git repository to the server:

    $ cd /opt/stack
    $ git clone https://github.com/openstack/ceilometer.git
  3. As a user with root permissions or sudo privileges, run the ceilometer installer:

    $ cd ceilometer
    $ sudo python setup.py install
  4. Copy the sample configuration files from the source tree to their final location.

    $ mkdir -p /etc/ceilometer
    $ cp etc/ceilometer/*.json /etc/ceilometer
    $ cp etc/ceilometer/*.yaml /etc/ceilometer
    $ cp etc/ceilometer/ceilometer.conf.sample /etc/ceilometer/ceilometer.conf
  5. Edit /etc/ceilometer/ceilometer.conf

    1. Configure RPC

      Set the RPC-related options correctly so ceilometer's daemons can communicate with each other and receive notifications from the other projects.

      In particular, look for the *_control_exchange options and make sure the names are correct. If you did not change the control_exchange settings for the other components, the defaults should be correct.

      Note

      Ceilometer makes extensive use of the messaging bus, but has not yet been tested with ZeroMQ. We recommend using Rabbit or qpid for now.

    2. Set the metering_secret value.

      Set the metering_secret value to a large, random, value. Use the same value in all ceilometer configuration files, on all nodes, so that messages passing between the nodes can be validated.

    Refer to /configuration for details about any other options you might want to modify before starting the service.

  6. Start the agent.

    $ ceilometer-agent-compute

    Note

    The default development configuration of the agent logs to stderr, so you may want to run this step using a screen session or other tool for maintaining a long-running program in the background.

Installing the Central Agent

double: installing; agent

Note

The central agent needs to be able to talk to keystone and any of the services being polled for updates.

  1. Clone the ceilometer git repository to the server:

    $ cd /opt/stack
    $ git clone https://github.com/openstack/ceilometer.git
  2. As a user with root permissions or sudo privileges, run the ceilometer installer:

    $ cd ceilometer
    $ sudo python setup.py install
  3. Copy the sample configuration files from the source tree to their final location.

    $ mkdir -p /etc/ceilometer
    $ cp etc/ceilometer/*.json /etc/ceilometer
    $ cp etc/ceilometer/*.yaml /etc/ceilometer
    $ cp etc/ceilometer/ceilometer.conf.sample /etc/ceilometer/ceilometer.conf
  4. Edit /etc/ceilometer/ceilometer.conf

    1. Configure RPC

      Set the RPC-related options correctly so ceilometer's daemons can communicate with each other and receive notifications from the other projects.

      In particular, look for the *_control_exchange options and make sure the names are correct. If you did not change the control_exchange settings for the other components, the defaults should be correct.

      Note

      Ceilometer makes extensive use of the messaging bus, but has not yet been tested with ZeroMQ. We recommend using Rabbit or qpid for now.

    2. Set the metering_secret value.

      Set the metering_secret value to a large, random, value. Use the same value in all ceilometer configuration files, on all nodes, so that messages passing between the nodes can be validated.

    Refer to /configuration for details about any other options you might want to modify before starting the service.

  5. Start the agent

    $ ceilometer-agent-central

Installing the API Server

double: installing; API

Note

The API server needs to be able to talk to keystone and ceilometer's database.

  1. Clone the ceilometer git repository to the server:

    $ cd /opt/stack
    $ git clone https://github.com/openstack/ceilometer.git
  2. As a user with root permissions or sudo privileges, run the ceilometer installer:

    $ cd ceilometer
    $ sudo python setup.py install
  3. Copy the sample configuration files from the source tree to their final location.

    $ mkdir -p /etc/ceilometer
    $ cp etc/ceilometer/*.json /etc/ceilometer
    $ cp etc/ceilometer/*.yaml /etc/ceilometer
    $ cp etc/ceilometer/ceilometer.conf.sample /etc/ceilometer/ceilometer.conf
  4. Edit /etc/ceilometer/ceilometer.conf

    1. Configure RPC

      Set the RPC-related options correctly so ceilometer's daemons can communicate with each other and receive notifications from the other projects.

      In particular, look for the *_control_exchange options and make sure the names are correct. If you did not change the control_exchange settings for the other components, the defaults should be correct.

      Note

      Ceilometer makes extensive use of the messaging bus, but has not yet been tested with ZeroMQ. We recommend using Rabbit or qpid for now.

    Refer to /configuration for details about any other options you might want to modify before starting the service.

  5. Start the API server.

    $ ceilometer-api

Note

The development version of the API server logs to stderr, so you may want to run this step using a screen session or other tool for maintaining a long-running program in the background.

Configuring keystone to work with API

double: installing; configure keystone

Note

The API server needs to be able to talk to keystone to authenticate.

  1. Create a service for ceilometer in keystone:

    $ keystone service-create --name=ceilometer \

    --type=metering --description="Ceilometer Service"

  2. Create an endpoint in keystone for ceilometer:

    $ keystone endpoint-create --region RegionOne \

    --service_id $CEILOMETER_SERVICE --publicurl "http://$SERVICE_HOST:8777/" --adminurl "http://$SERVICE_HOST:8777/" --internalurl "http://$SERVICE_HOST:8777/"

Note

CEILOMETER_SERVICE is the id of the service created by the first command and SERVICE_HOST is the host where the Ceilometer API is running. The default port value for ceilometer API is 8777. If the port value has been customized, adjust accordingly.

Use multiple dispatchers

double: installing; multiple dispatchers

Note

The Ceilometer collector allows multiple dispatchers to be configured so that metering data can be easily sent to multiple internal and external systems.

Ceilometer by default only saves metering data in a database, to allow Ceilometer to send metering data to other systems in addition to the database, multiple dispatchers can be developed and enabled by modifying Ceilometer configuration file.

Ceilometer ships two dispatchers currently. One is called database dispatcher, and the other is called file dispatcher. As the names imply, database dispatcher basically sends metering data to a database driver, eventually metering data will be saved in database. File dispatcher sends metering data into a file. The location, name, size of the file can be configured in ceilometer configuration file. These two dispatchers are shipped in the Ceilometer egg and defined in the entry_points as follows:

[ceilometer.dispatcher] file = ceilometer.collector.dispatcher.file:FileDispatcher database = ceilometer.collector.dispatcher.database:DatabaseDispatcher

To use both dispatchers on a Ceilometer collector service, add the following line in file ceilometer.conf

[collector] dispatcher=database dispatcher=file

If there is no dispatcher present, database dispatcher is used as the default. If in some cases such as traffic tests, no dispatcher is needed, one can configure the line like the following:

dispatcher=

With above configuration, no dispatcher is used by the Ceilometer collector service, all metering data received by Ceilometer collector will be dropped.