65dba1a7aa
Change-Id: I95210098556a22d7bd05f245ae387ee13041fa61
398 lines
18 KiB
ReStructuredText
398 lines
18 KiB
ReStructuredText
=====================
|
|
Administrator's Guide
|
|
=====================
|
|
|
|
------------------
|
|
Managing the Rings
|
|
------------------
|
|
|
|
You need to build the storage rings on the proxy server node, and distribute them to all the servers in the cluster. Storage rings contain information about all the Swift storage partitions and how they are distributed between the different nodes and disks. For more information see :doc:`overview_ring`.
|
|
|
|
Removing a device from the ring::
|
|
|
|
swift-ring-builder <builder-file> remove <ip_address>/<device_name>
|
|
|
|
Removing a server from the ring::
|
|
|
|
swift-ring-builder <builder-file> remove <ip_address>
|
|
|
|
Adding devices to the ring:
|
|
|
|
See :ref:`ring-preparing`
|
|
|
|
See what devices for a server are in the ring::
|
|
|
|
swift-ring-builder <builder-file> search <ip_address>
|
|
|
|
Once you are done with all changes to the ring, the changes need to be
|
|
"committed"::
|
|
|
|
swift-ring-builder <builder-file> rebalance
|
|
|
|
Once the new rings are built, they should be pushed out to all the servers
|
|
in the cluster.
|
|
|
|
-----------------------
|
|
Scripting Ring Creation
|
|
-----------------------
|
|
You can create scripts to create the account and container rings and rebalance. Here's an example script for the Account ring. Use similar commands to create a make-container-ring.sh script on the proxy server node.
|
|
|
|
1. Create a script file called make-account-ring.sh on the proxy server node with the following content::
|
|
|
|
#!/bin/bash
|
|
cd /etc/swift
|
|
rm -f account.builder account.ring.gz backups/account.builder backups/account.ring.gz
|
|
swift-ring-builder account.builder create 18 3 1
|
|
swift-ring-builder account.builder add z1-<account-server-1>:6002/sdb1 1
|
|
swift-ring-builder account.builder add z2-<account-server-2>:6002/sdb1 1
|
|
swift-ring-builder account.builder rebalance
|
|
|
|
You need to replace the values of <account-server-1>, <account-server-2>, etc. with the IP addresses of the account servers used in your setup. You can have as many account servers as you need. All account servers are assumed to be listening on port 6002, and have a storage device called "sdb1" (this is a directory name created under /drives when we setup the account server). The "z1", "z2", etc. designate zones, and you can choose whether you put devices in the same or different zones.
|
|
|
|
2. Make the script file executable and run it to create the account ring file::
|
|
|
|
chmod +x make-account-ring.sh
|
|
sudo ./make-account-ring.sh
|
|
|
|
3. Copy the resulting ring file /etc/swift/account.ring.gz to all the account server nodes in your Swift environment, and put them in the /etc/swift directory on these nodes. Make sure that every time you change the account ring configuration, you copy the resulting ring file to all the account nodes.
|
|
|
|
-----------------------
|
|
Handling System Updates
|
|
-----------------------
|
|
|
|
It is recommended that system updates and reboots are done a zone at a time.
|
|
This allows the update to happen, and for the Swift cluster to stay available
|
|
and responsive to requests. It is also advisable when updating a zone, let
|
|
it run for a while before updating the other zones to make sure the update
|
|
doesn't have any adverse effects.
|
|
|
|
----------------------
|
|
Handling Drive Failure
|
|
----------------------
|
|
|
|
In the event that a drive has failed, the first step is to make sure the drive
|
|
is unmounted. This will make it easier for swift to work around the failure
|
|
until it has been resolved. If the drive is going to be replaced immediately,
|
|
then it is just best to replace the drive, format it, remount it, and let
|
|
replication fill it up.
|
|
|
|
If the drive can't be replaced immediately, then it is best to leave it
|
|
unmounted, and remove the drive from the ring. This will allow all the
|
|
replicas that were on that drive to be replicated elsewhere until the drive
|
|
is replaced. Once the drive is replaced, it can be re-added to the ring.
|
|
|
|
-----------------------
|
|
Handling Server Failure
|
|
-----------------------
|
|
|
|
If a server is having hardware issues, it is a good idea to make sure the
|
|
swift services are not running. This will allow Swift to work around the
|
|
failure while you troubleshoot.
|
|
|
|
If the server just needs a reboot, or a small amount of work that should
|
|
only last a couple of hours, then it is probably best to let Swift work
|
|
around the failure and get the machine fixed and back online. When the
|
|
machine comes back online, replication will make sure that anything that is
|
|
missing during the downtime will get updated.
|
|
|
|
If the server has more serious issues, then it is probably best to remove
|
|
all of the server's devices from the ring. Once the server has been repaired
|
|
and is back online, the server's devices can be added back into the ring.
|
|
It is important that the devices are reformatted before putting them back
|
|
into the ring as it is likely to be responsible for a different set of
|
|
partitions than before.
|
|
|
|
-----------------------
|
|
Detecting Failed Drives
|
|
-----------------------
|
|
|
|
It has been our experience that when a drive is about to fail, error messages
|
|
will spew into `/var/log/kern.log`. There is a script called
|
|
`swift-drive-audit` that can be run via cron to watch for bad drives. If
|
|
errors are detected, it will unmount the bad drive, so that Swift can
|
|
work around it. The script takes a configuration file with the following
|
|
settings:
|
|
|
|
[drive-audit]
|
|
|
|
================== ========== ===========================================
|
|
Option Default Description
|
|
------------------ ---------- -------------------------------------------
|
|
log_facility LOG_LOCAL0 Syslog log facility
|
|
log_level INFO Log level
|
|
device_dir /srv/node Directory devices are mounted under
|
|
minutes 60 Number of minutes to look back in
|
|
`/var/log/kern.log`
|
|
error_limit 1 Number of errors to find before a device
|
|
is unmounted
|
|
================== ========== ===========================================
|
|
|
|
This script has only been tested on Ubuntu 10.04, so if you are using a
|
|
different distro or OS, some care should be taken before using in production.
|
|
|
|
--------------
|
|
Cluster Health
|
|
--------------
|
|
|
|
There is a swift-dispersion-report tool for measuring overall cluster health.
|
|
This is accomplished by checking if a set of deliberately distributed
|
|
containers and objects are currently in their proper places within the cluster.
|
|
|
|
For instance, a common deployment has three replicas of each object. The health
|
|
of that object can be measured by checking if each replica is in its proper
|
|
place. If only 2 of the 3 is in place the object's heath can be said to be at
|
|
66.66%, where 100% would be perfect.
|
|
|
|
A single object's health, especially an older object, usually reflects the
|
|
health of that entire partition the object is in. If we make enough objects on
|
|
a distinct percentage of the partitions in the cluster, we can get a pretty
|
|
valid estimate of the overall cluster health. In practice, about 1% partition
|
|
coverage seems to balance well between accuracy and the amount of time it takes
|
|
to gather results.
|
|
|
|
The first thing that needs to be done to provide this health value is create a
|
|
new account solely for this usage. Next, we need to place the containers and
|
|
objects throughout the system so that they are on distinct partitions. The
|
|
swift-dispersion-populate tool does this by making up random container and
|
|
object names until they fall on distinct partitions. Last, and repeatedly for
|
|
the life of the cluster, we need to run the swift-dispersion-report tool to
|
|
check the health of each of these containers and objects.
|
|
|
|
These tools need direct access to the entire cluster and to the ring files
|
|
(installing them on a proxy server will probably do). Both
|
|
swift-dispersion-populate and swift-dispersion-report use the same
|
|
configuration file, /etc/swift/dispersion.conf. Example conf file::
|
|
|
|
[dispersion]
|
|
auth_url = http://saio:11000/auth/v1.0
|
|
auth_user = test:tester
|
|
auth_key = testing
|
|
|
|
There are also options for the conf file for specifying the dispersion coverage
|
|
(defaults to 1%), retries, concurrency, etc. though usually the defaults are
|
|
fine.
|
|
|
|
Once the configuration is in place, run `swift-dispersion-populate` to populate
|
|
the containers and objects throughout the cluster.
|
|
|
|
Now that those containers and objects are in place, you can run
|
|
`swift-dispersion-report` to get a dispersion report, or the overall health of
|
|
the cluster. Here is an example of a cluster in perfect health::
|
|
|
|
$ swift-dispersion-report
|
|
Queried 2621 containers for dispersion reporting, 19s, 0 retries
|
|
100.00% of container copies found (7863 of 7863)
|
|
Sample represents 1.00% of the container partition space
|
|
|
|
Queried 2619 objects for dispersion reporting, 7s, 0 retries
|
|
100.00% of object copies found (7857 of 7857)
|
|
Sample represents 1.00% of the object partition space
|
|
|
|
Now I'll deliberately double the weight of a device in the object ring (with
|
|
replication turned off) and rerun the dispersion report to show what impact
|
|
that has::
|
|
|
|
$ swift-ring-builder object.builder set_weight d0 200
|
|
$ swift-ring-builder object.builder rebalance
|
|
...
|
|
$ swift-dispersion-report
|
|
Queried 2621 containers for dispersion reporting, 8s, 0 retries
|
|
100.00% of container copies found (7863 of 7863)
|
|
Sample represents 1.00% of the container partition space
|
|
|
|
Queried 2619 objects for dispersion reporting, 7s, 0 retries
|
|
There were 1763 partitions missing one copy.
|
|
77.56% of object copies found (6094 of 7857)
|
|
Sample represents 1.00% of the object partition space
|
|
|
|
You can see the health of the objects in the cluster has gone down
|
|
significantly. Of course, I only have four devices in this test environment, in
|
|
a production environment with many many devices the impact of one device change
|
|
is much less. Next, I'll run the replicators to get everything put back into
|
|
place and then rerun the dispersion report::
|
|
|
|
... start object replicators and monitor logs until they're caught up ...
|
|
$ swift-dispersion-report
|
|
Queried 2621 containers for dispersion reporting, 17s, 0 retries
|
|
100.00% of container copies found (7863 of 7863)
|
|
Sample represents 1.00% of the container partition space
|
|
|
|
Queried 2619 objects for dispersion reporting, 7s, 0 retries
|
|
100.00% of object copies found (7857 of 7857)
|
|
Sample represents 1.00% of the object partition space
|
|
|
|
|
|
--------------------------------
|
|
Cluster Telemetry and Monitoring
|
|
--------------------------------
|
|
|
|
Various metrics and telemetry can be obtained from the object servers using
|
|
the recon server middleware and the swift-recon cli. To do so update your
|
|
object-server.conf to enable the recon middleware by adding a pipeline entry
|
|
and setting its one option::
|
|
|
|
[pipeline:main]
|
|
pipeline = recon object-server
|
|
|
|
[filter:recon]
|
|
use = egg:swift#recon
|
|
recon_cache_path = /var/cache/swift
|
|
|
|
The recon_cache_path simply sets the directory where stats for a few items will
|
|
be stored. Depending on the method of deployment you may need to create this
|
|
directory manually and ensure that swift has read/write.
|
|
|
|
If you wish to enable reporting of replication times you can enable recon
|
|
support in the object-replicator section of the object-server.conf::
|
|
|
|
[object-replicator]
|
|
...
|
|
recon_enable = yes
|
|
recon_cache_path = /var/cache/swift
|
|
|
|
Finally if you also wish to track asynchronous pending's you will need to setup
|
|
a cronjob to run the swift-recon-cron script periodically::
|
|
|
|
*/5 * * * * swift /usr/bin/swift-recon-cron /etc/swift/object-server.conf
|
|
|
|
Once enabled a GET request for "/recon/<metric>" to the object server will
|
|
return a json formatted response::
|
|
|
|
fhines@ubuntu:~$ curl -i http://localhost:6030/recon/async
|
|
HTTP/1.1 200 OK
|
|
Content-Type: application/json
|
|
Content-Length: 20
|
|
Date: Tue, 18 Oct 2011 21:03:01 GMT
|
|
|
|
{"async_pending": 0}
|
|
|
|
The following metrics and telemetry are currently exposed:
|
|
|
|
================== ====================================================
|
|
Request URI Description
|
|
------------------ ----------------------------------------------------
|
|
/recon/load returns 1,5, and 15 minute load average
|
|
/recon/async returns count of async pending
|
|
/recon/mem returns /proc/meminfo
|
|
/recon/replication returns last logged object replication time
|
|
/recon/mounted returns *ALL* currently mounted filesystems
|
|
/recon/unmounted returns all unmounted drives if mount_check = True
|
|
/recon/diskusage returns disk utilization for storage devices
|
|
/recon/ringmd5 returns object/container/account ring md5sums
|
|
/recon/quarantined returns # of quarantined objects/accounts/containers
|
|
/recon/sockstat returns consumable info from /proc/net/sockstat|6
|
|
================== ====================================================
|
|
|
|
This information can also be queried via the swift-recon command line utility::
|
|
|
|
fhines@ubuntu:~$ swift-recon -h
|
|
===============================================================================
|
|
Usage:
|
|
usage: swift-recon [-v] [--suppress] [-a] [-r] [-u] [-d] [-l] [--objmd5]
|
|
|
|
|
|
Options:
|
|
-h, --help show this help message and exit
|
|
-v, --verbose Print verbose info
|
|
--suppress Suppress most connection related errors
|
|
-a, --async Get async stats
|
|
-r, --replication Get replication stats
|
|
-u, --unmounted Check cluster for unmounted devices
|
|
-d, --diskusage Get disk usage stats
|
|
-l, --loadstats Get cluster load average stats
|
|
-q, --quarantined Get cluster quarantine stats
|
|
--objmd5 Get md5sums of object.ring.gz and compare to local
|
|
copy
|
|
--sockstat Get cluster socket usage stats
|
|
--all Perform all checks. Equivalent to -arudlq --objmd5
|
|
--socketstat
|
|
-z ZONE, --zone=ZONE Only query servers in specified zone
|
|
--swiftdir=SWIFTDIR Default = /etc/swift
|
|
|
|
For example, to obtain quarantine stats from all hosts in zone "3"::
|
|
|
|
fhines@ubuntu:~$ swift-recon -q --zone 3
|
|
===============================================================================
|
|
[2011-10-18 19:36:00] Checking quarantine dirs on 1 hosts...
|
|
[Quarantined objects] low: 4, high: 4, avg: 4, total: 4
|
|
[Quarantined accounts] low: 0, high: 0, avg: 0, total: 0
|
|
[Quarantined containers] low: 0, high: 0, avg: 0, total: 0
|
|
===============================================================================
|
|
|
|
|
|
------------------------
|
|
Debugging Tips and Tools
|
|
------------------------
|
|
|
|
When a request is made to Swift, it is given a unique transaction id. This
|
|
id should be in every log line that has to do with that request. This can
|
|
be useful when looking at all the services that are hit by a single request.
|
|
|
|
If you need to know where a specific account, container or object is in the
|
|
cluster, `swift-get-nodes` will show the location where each replica should be.
|
|
|
|
If you are looking at an object on the server and need more info,
|
|
`swift-object-info` will display the account, container, replica locations
|
|
and metadata of the object.
|
|
|
|
If you want to audit the data for an account, `swift-account-audit` can be
|
|
used to crawl the account, checking that all containers and objects can be
|
|
found.
|
|
|
|
-----------------
|
|
Managing Services
|
|
-----------------
|
|
|
|
Swift services are generally managed with `swift-init`. the general usage is
|
|
``swift-init <service> <command>``, where service is the swift service to
|
|
manage (for example object, container, account, proxy) and command is one of:
|
|
|
|
========== ===============================================
|
|
Command Description
|
|
---------- -----------------------------------------------
|
|
start Start the service
|
|
stop Stop the service
|
|
restart Restart the service
|
|
shutdown Attempt to gracefully shutdown the service
|
|
reload Attempt to gracefully restart the service
|
|
========== ===============================================
|
|
|
|
A graceful shutdown or reload will finish any current requests before
|
|
completely stopping the old service. There is also a special case of
|
|
`swift-init all <command>`, which will run the command for all swift services.
|
|
|
|
--------------
|
|
Object Auditor
|
|
--------------
|
|
|
|
On system failures, the XFS file system can sometimes truncate files it's
|
|
trying to write and produce zero byte files. The object-auditor will catch
|
|
these problems but in the case of a system crash it would be advisable to run
|
|
an extra, less rate limited sweep to check for these specific files. You can
|
|
run this command as follows:
|
|
`swift-object-auditor /path/to/object-server/config/file.conf once -z 1000`
|
|
"-z" means to only check for zero-byte files at 1000 files per second.
|
|
|
|
-------------
|
|
Swift Orphans
|
|
-------------
|
|
|
|
Swift Orphans are processes left over after a reload of a Swift server.
|
|
|
|
For example, when upgrading a proxy server you would probaby finish with a `swift-init proxy-server reload` or `/etc/init.d/swift-proxy reload`. This kills the parent proxy server process and leaves the child processes running to finish processing whatever requests they might be handling at the time. It then starts up a new parent proxy server process and its children to handle new incoming requests. This allows zero-downtime upgrades with no impact to existing requests.
|
|
|
|
The orphaned child processes may take a while to exit, depending on the length of the requests they were handling. However, sometimes an old process can be hung up due to some bug or hardware issue. In these cases, these orphaned processes will hang around forever. `swift-orphans` can be used to find and kill these orphans.
|
|
|
|
`swift-orphans` with no arguments will just list the orphans it finds that were started more than 24 hours ago. You shouldn't really check for orphans until 24 hours after you perform a reload, as some requests can take a long time to process. `swift-orphans -k TERM` will send the SIG_TERM signal to the orphans processes, or you can `kill -TERM` the pids yourself if you prefer.
|
|
|
|
You can run `swift-orphans --help` for more options.
|
|
|
|
|
|
------------
|
|
Swift Oldies
|
|
------------
|
|
|
|
Swift Oldies are processes that have just been around for a long time. There's nothing necessarily wrong with this, but it might indicate a hung process if you regularly upgrade and reload/restart services. You might have so many servers that you don't notice when a reload/restart fails, `swift-oldies` can help with this.
|
|
|
|
For example, if you upgraded and reloaded/restarted everything 2 days ago, and you've already cleaned up any orphans with `swift-orphans`, you can run `swift-oldies -a 48` to find any Swift processes still around that were started more than 2 days ago and then investigate them accordingly.
|