Add min and max space size

This commit is contained in:
Evgeniy L 2015-12-25 00:19:21 +03:00
parent d48e095b0e
commit 704c73a46c

View File

@ -105,17 +105,33 @@ class DynamicAllocationLinearProgram(object):
# matrix
self.equality_constraint_vector = np.array([])
self.upper_bound_constraint_matrix = []
self.upper_bound_constraint_vector = []
self.lower_bound_constraint_matrix = []
self.lower_bound_constraint_vector = []
# Specify boundaries of each x in the next format (min, max). Use
# None for one of min or max when there is no bound.
self.bounds = np.array([])
# For each space, xn (size of the space) is represented
# for each disk as separate variable, so for each
# disk we have len(spaces) * len(disks) sizes
self.x_amount = len(self.disks) * len(self.spaces)
self._init_equation(self.disks, self.spaces)
self._init_min_max()
def solve(self):
upper_bound_matrix = self._make_upper_bound_constraint_matrix() or None
upper_bound_vector = self._make_upper_bound_constraint_vector() or None
solution = linprog(
self.objective_function_coefficients,
A_eq=self.equality_constraint_matrix,
b_eq=self.equality_constraint_vector,
A_ub=upper_bound_matrix,
b_ub=upper_bound_vector,
bounds=self.bounds,
options={"disp": False})
@ -123,6 +139,41 @@ class DynamicAllocationLinearProgram(object):
return self._convert_solution(solution)
def _init_min_max(self):
for space_idx, space in enumerate(self.spaces):
row = self._make_matrix_row()
max_size = getattr(space, 'max_size', None)
min_size = getattr(space, 'min_size', None)
for disk_idx in range(len(self.disks)):
row[disk_idx * len(self.spaces) + space_idx] = 1
if min_size is not None:
self.lower_bound_constraint_matrix.append(row)
self.lower_bound_constraint_vector.append(min_size)
if max_size is not None:
self.upper_bound_constraint_matrix.append(row)
self.upper_bound_constraint_vector.append(max_size)
def _make_matrix_row(self):
return np.zeros(self.x_amount)
def _make_upper_bound_constraint_matrix(self):
"""Upper bound constraint matrix consist of upper bound
matrix and lower bound matrix wich changed sign
"""
return (self.upper_bound_constraint_matrix +
[[-i for i in row] for row in self.lower_bound_constraint_matrix])
def _make_upper_bound_constraint_vector(self):
"""Upper bound constraint vector consist of upper bound
and lower bound, with changed sign
"""
return (self.upper_bound_constraint_vector +
[-i for i in self.lower_bound_constraint_vector])
def _convert_solution(self, solution):
result = []
@ -161,10 +212,7 @@ class DynamicAllocationLinearProgram(object):
# 0, - x5 multiplier, size of space 1 on 3rd disk, 0 for the first
# 0] - x6 multiplier, size of space 2 on 3rd disk, 0 for the first
# For each space, xn (size of the space) is represented
# for each disk as separate variable, so for each
# disk we have len(spaces) * len(disks) sizes
equality_matrix_row = np.zeros(len(spaces) * len(disks))
equality_matrix_row = self._make_matrix_row()
# Amount of coefficients is equal to amount of columns in the matrix
self._init_objective_function_coefficient(len(spaces) * len(disks))
@ -176,6 +224,10 @@ class DynamicAllocationLinearProgram(object):
self.equality_constraint_matrix.append(equality_matrix_row)
equality_matrix_row = shift(equality_matrix_row, len(spaces), val=0)
# Size of each space should be more or equal to 0
for _ in range(self.x_amount):
self._add_bound(0, None)
def _add_objective_function_coefficient(self):
# By default the algorithm tries to minimize the solution
# we should invert sign, in order to make it as a maximization